YAK SHAVING A GOOD PLACE TO EAT USING NON NEGATIVE MATRIX FACTORIZATION

EUROPYTHON 2015

Adriano Petrich

petrich@gmail.com @fractal

DISCLAIMER

My opinions not Red Hat's opinions

Mostly because I don't know Red Hat's opinions about restaurants or linear algebra

I'm just lazy at creating styles for slides and this looked ok

All this talk was created after having multiple bad pizzas from multiple places with 5 stars reviews of "Best pizza in <foo>" and a good book

I don't know Red Hat's opinion about pizza also.

WHO AM I

A Brazilian pythonista that moved to Scotland

FOR THE WEATHER

WHAT IS A GOOD PLACE TO EAT?

This is about the #119 or the #314 th at's where quirkiness live

SO HOW DO WE FIND THEM?

STARS AND RATINGS

Sakrow gave 5 stars

RESTAURANT B

ピーターサム gave 4 stars

NOT REALLY ABSOLUTELY NOTHING, BUT NOT MUCH

RATINGS ALONE JUST DON'T CUT IT

NUMBER AND DISTRIBUTION OF RATINGS

RESTAURANT A

RESTAURANT B

THE AMOUNT OF RATINGS HELP BUT DOESN'T SOLVE THE PROBLEM

AND NOW FOR SOMETHING

COMPLETELY DIFFERENT!

A MAN WITH LINEAR ALGEBRA UP HIS NOSE!

LINEAR ALGEBRA!

WHEN IS THIS TRUE? $AxB \neq BxA$

YES!

DIRTY CLOTHES!

Washing x Drying ≠ Drying x Washing

IS NOT COMMUTATIVE

Thanks wikipedia for the weirdest latex math equation I've ever typed!

https://en.wikipedia.org/wiki/Commutative_property

Also matrix multiplication

$$A_{2,3} = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix} \qquad B_{3,2} = \begin{vmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{vmatrix}$$

$$AxB = \begin{vmatrix} 22 & 28 \\ 49 & 64 \end{vmatrix}$$

$$BxA = \begin{vmatrix} 9 & 12 & 15 \\ 19 & 26 & 33 \\ 29 & 40 & 51 \end{vmatrix}$$
OBS: I'm using "x" to represent multiplication from new on

MATHEMATICAL!

THE DIMENSION VANISHING TRICK

 $A_{x,n} \times B_{n,y} = C_{x,y}$

 $A_{X, \bigotimes} X B_{\bigotimes, Y} = C_{X, Y}$

HE WHO CAN DESTROY A THING, CONTROLS A THING.

Paul Muad'Dib

São Paulo City in 1893

Year 🗢	Immigrants 🗧	Percentage of the City [8] \searrow 🕏
Italians	45,457	35%
Portuguese	14,437	11%
Spanish	4,818	3.7%

Immigrants established in São Paulo state in 1940

Immigrants 🕏	Population ^[45] \Rightarrow		
Italians	694.489		
Spanish	374.658		
Portuguese	362.156		
Japanese	85.103		
Germans	50.507		
Austrians	33.133		

https://en.wikipedia.org/wiki/Immigration_to_Brazil

People that have the same backgro und judge food using the same sta ndards

True F Italian,	Pizza Co 86 Reviews	#89 of 282 Restaurants in Dundee	#101 of 305 Plac	es to Eat in Dundee	_
	Visitor rating				
	Excellent		33	L	
	Very good		24		
	Average		14		
	Poor		8		
	Terrible		7		

THUS PROVING MY HYPOTHESIS!

This talk is not really data science.

I didn't want to go into a Gaussian analysing rampage.

this is based on a hunch

What constitutes a good place to ea t is deeply related to an individual b ackground

AND THIS ONE:

The more that you agree with multiples reviews from SAKROW

The more likely that you might like another restaurant that she likes

LINEAR ALGEBRA WITH FOOD

SUPPOSE I HAVE A LOAD OF DATA LIKE THIS

Pilar L gave 4 stars to Restaurante Ambigu ピーターサム gave 4 stars to Rio Oja

• • • •

{{ user_u }} gave {{ s }} starts to {{ restaurant_r }}

M_{restaurants,users}

Just to be dench*

* sorry it is a UK thinguie

http://www.urbandictionary.com/define.php?term=Dench

 $C_{X,Y} = A_{X, \textcircled{Q}} X B_{\textcircled{Q},Y}$

where 🥞 is any emoji number that I want

And create another matrix C so that

 $M_{r,u} \approx C_{r,u}$

In a way that I can calculate R and U

$C_{r,u} = R_{r,categories} \times U_{categories,u}$

R_{r,categories}

Is a matrix where each restaurant is weighted in each category

U_{categories,u}

The same way that U a matrix where each user is weighted in each category

NON NEGATIVE MATRIX FACTORIZATION!

Is a way of weigthing data in automatic categories

$M_{r,u} \approx C_{r,u} = R_{r,categories} \times U_{categories,u}$

THE NON NEGATIVE PART OF IT

- It facilitates a lot of the methods that we can use to generate R and U
- in our case it is good that stars are range(6)

THE NEXT PAGE HAS CAT.GIF

def factorize(v, pc=10, iteractions=50): # Initialize the R and U matrices with random values

Perform operation a maximum of iter times
for i in range(iteractions):

Calculate the current difference

Terminate if the matrix has been fully factorized

Update R matrix # Update U matrix return R, U

Programming the collective intelligence

Toby Seagran

http://shop.oreilly.com/product/9780596529321.do

http://akamaicovers.oreilly.com/images/978059652922/ca

http://localhost:8888/notebooks/EP2015_yakshaving_with_nmf.ipynb#

OBS: I'm not publishing the dataset because I'm not sure about scraped data, but talk to me if you want it

YAK SHAVING

"You see, yak shaving is what you are doin g when you're doing some stupid, fiddly lit tle task that bears no obvious relationship to what you're supposed to be working on , but yet a chain of twelve causal relations links what you're doing to the original met a-task."

http://projects.csail.mit.edu/gsb/old-archive/gsb-archive/gsb2000-02-11.h

Adriano Petrich

petrich@gmail

@fractal

slides at:

http://redhat.slides.com/apetrich/yakshaving-a-good-place-to-eat-usingnon-negative-matrix-factorization

notebook at github/frac/ep2015

