WRITING QUALITY
CODE

IDEAS, TECHNIQUES AND TOOLS FOR
IMPROVING THE QUALITY OF WRITTEN CODE

Radostaw Jankiewicz / W /@

https://github.com/radekj
http://twitter.com/radek_j

WHO AM |

e Programming in Python since 2007

e Web applications (mostly)
o STINEXT

http://stxnext.com/

RANDOM FACT...

Player 2

STX Hackathon v3.0

Player 1

SRRCED N

AGENDA

Definition of code quality

Why is it important

How to measure the quality of code
How to improve quality of written code
e Good practices

e Useful tools

e Other hints

. Q&A

HOW TO DEFINE HIGH QUALITY
o(0])] ¥

CHARACTERISTICS OF SOFTWARE
QUALITY

e External
e [nternal

External characteristics of software quality

e Corectness

e Usability

o Efficiency

e Reliability

e |ntegrity

e Adaptability
e Accuracy

e Robustness

Internal characteristics software quality

e Maintainability

e Flexibility

e Portability

e Reusability

e Readability

e Testability

e Understandability

GOOD CODE FROM THE
DEVELOPER'S POINT OF VIEW:

UNDERSTANDABLE

Time spent by a programmer

Writing new code
Modyfying existing code

Understanding code

http://blog.codinghorror.com/when-understanding-means-rewriting

http://blog.codinghorror.com/when-understanding-means-rewriting/

HOW IMPORTANT IS HIGH QUALITY
OF CODE

Code quality

POOR QUALITY CODE COSTS

Code quality vs time for feature

Dependency of code quality and time required for implementing a new

Time per feature

HOW TO MEASURE THE QUALITY OF
CODE

TL‘E OMLY VAL measuge men
OF Coche GEL{HL.H'\;I WTFS/hiMmj—i

SOFTWARE QUALITY METRICS

e Cyclomatic Complexity
e Halstead complexity measures
e Maintainability Index

CYCLOMATIC COMPLEXITY

Construct Effect Reasoning

on CC
if +1 An if statement is a single decision.
else +0 The else statement does not cause
a new decision.
for +1 There is a decision at the start of
the loop.
Boolean +1 Every boolean operator (and, or)
Operator adds a decision point.

Full table:

https://radon.readthedocs.org/en/latest/intro.html

def example (foo, bar, baz):

if foo > bar:
if foo > baz:
return foo
else:

return baz
elif foo == bar:
return bar
else:
return baz

foo == bar

bar

foo

HALSTEAD METRICS

N1 =the number of distinct operators
N2 = the number of distinct operands
N1 =the total number of operators
N2 = the total number of operands

def example (foo, bar, baz):
if foo > bar:
if foo > baz:
return foo
else:

return (baz / 3)
elif foo == bar:
return bar
else:
return baz

HALSTEAD METRICS

Program vocabulary: n = n1 + no
Program length: N = N; + N>
Calculated program length:

N = n logy 1 + 12 logy no
Volume: V' = N log, 1

N
Difficulty: D = -+ . 22
2 12
Effortt B =D -V

E
Time required to program: 1’ = 13 seconds

MAINTAINABILITY INDEX
MI =171 -52InV —0.23G — 16.2In L

e Visthe Halstead Volume
e Gisthe total Cyclomatic Complexity
e Listhe number of Source Lines of Code (SLOC)

$ radon cc ./url.py -s

-PY
287:4 URLMethodsMixin.resource url - C (18)

35:4 URLMethodsMixin. partial application url - C (17)
85:4 URLMethodsMixin.route url - C (16)

31:0 URLMethodsMixin - B (7)

539:4 URLMethodsMixin.static url - A (95)

753:0 static url - A (3)

$ radon mi ./url*.py -s
./urldispatch.py - A (56.71)
./url.py - A (46.64)

RADON - CC RESULTS

CC Rank Risk

score

1-5 A low - simple block

6-10 B low - well structured and stable block

11-20 C moderate - slightly complex block

21-30 D more than moderate - more complex
block

31-40 E high - complex block, alarming

41+ F very high - error-prone, unstable block

RADON - MI RESULTS

Ml score Rank Maintainability

100-20 A Very high

19-10 B Medium

9-0 C Extremely low

WEB FRAMEWORKS - MI RESULTS

Rank Pyramid (187 Flask (61 Django (836
files) files) files)

A 97.8% 100% 98.3%

B 1.6% 0% 0.3%

C 0.5% 0% 1.3%

PYLINT

Static code analysis
Coding Standard
Error detection
Refactoring help
Fully customizable
Editor/IDE integration

def example (foo, a, blah):
qux = 123
if foo > a:
return foo
else:
return datetime.now ()

R R R A b I b b b b b i Module a

Missing module docstring (missing-docstring)

Black listed name "foo" (blacklisted-name)

Invalid argument name "a" (invalid-name)

Missing function docstring (missing-docstring)
Undefined variable 'datetime' (undefined-variable)
Unused argument 'blah' (unused-argument)

Unused variable 'qux' (unused-variable)

Your code has been rated at -8.33/10

MORE TOOLS

R. Ganczarek
Code Quality in Python - tools and reasons

Tomorrow, 16:45 (Barria 2 room)

HOW TO IMPROVE QUALITY OF
WRITTEN CODE

PEER CODE REVIEW

e Decreases number of bugs

e Enforces writting neat code
e Speeds up learning

e Enhances the team culture

CODE REVIEW - USEFUL RULES

e All changesets get code reviewed

e Automate everything you can

e Everyone makes code reviews / everybody gets code
reviewed

CODE REVIEW TOOLS

Pull requests inline comments (Github / Bitbucket / ...)
Gerrit

Crucible

Phabricator

many more...

READABILITY COUNTS

CODING CONVENTION

Keep the code consistent with the project's convention.
Use automatic syntax/code style guide checking.

PEP-8 is a good option.

NAMING VARIABLES, CLASSES,
METHODS...

“There are only two hard things in
Computer Science: cache invalidation and
naming things.”

Phil Karlton

X = # bad
data 5 # bad
max # very bad

maximum number of people in the car = 123 # bad

num_ seats # not that bad
total seats 5 # good
max passengers = 5 # good

seat.is not occupied = True # bad

seat.is empty = True # ok

DOCSTRINGS

MUST be valid. Wrong docstring is worse than no
docstring at all. Keep it up to date.

Do not explain the implementation details

Summarize the function's behaviour

Document function's arguments, return value(s), side
effects, exceptions raised, and restrictions on when it can
be called (all if applicable)

Xx = x + 1 # Increment x

KEEP YOUR TESTS CLEAN

“If you let the tests rot, then your code will
rot too. Keep your tests clean.”

Rober C. Martin - "Clean Code"

SELF EFFORT

What else could you do to increase the quality of written
code?

>>> x > 10 and x <= 20

>>> 10 < x <= 20

>>> colors = ['blue', 'red', 'green', 'red', 'blue',

>>> [(x, colors.count(x)) for x in set (colors)]
[('blue', 2), ('green', 1), ('red', 3)]

>>> from collections import Counter
>>> Counter (colors)
Counter ({'red': 3, 'blue': 2, 'green': 1})

'red']

>>> from contextlib import contextmanager
>>> (dcontextmanager
def tag(name) :
print "<%$s>" % name
yield
print "</%s>" %

>>> with tag("hl"):
print "foo"

<hl>
foo
</hl>

SELF EFFORT

Read valuable books
Read documentation

Practice a lot

CHECKIO.ORG

Clear N

Hide description
You are given a text, which contains different english letters and punctuation symbols. You should find

the most frequent letter in the text. The letter returned must be in lower case.
While checking for the m wanted letter, casing does not matter, so for the purpose of your search,
"A" == "a". Make sure you do not count punctuation symbols, digits and whitespaces, only letters.

If you have two or more letters with the same frequency, then return the letter which comes first in
the latin alphabet. For example -- "one" contains "o0", "n", "e" only once for each, thus we choose "e".

Input: A text for analysis as a string (unicode for py2.7).
Output: The most frequent letter in lower case as a string.

Example:

checkio("Hello World!") == "1"
checkio("How do you do?"}) == "o"
checkio("One") == "e"
checkio("Oops!") == "o"

checkio("AAaooo!!!!") == "a"
checkio("abe") == "a"

HOME
200 @ 46 «

Story
Solve it

Discuss (9s)
Timeline
Solutions .=
Random

Python 3.3

Get next task

3in L

|:http:,‘,fwww.checkio.org,1]

cm s * W

import string
from collections import Counter

def checkio(text):

delete_chars = string.punctuation + string.whitespace + string.digits

trans = text.maketrans("", "", delete_chars)

clean_text = text.translate(trans)

counter = Counter(clean_text.lower())

max_occurances = max(counter.values())

most_common_letters = [k for k, v in counter.items() if v == max_occurances]
return sorted(most_common_letters)[0]

1
2
3
4
5
6
7
8
9

Solutions Exr "The Most War_lted Letter"

Clear / Creative / Speedy / Uncategorized

Most voted / Newest / Most commented

@q
o PR
o (g
& .

‘Eﬁ uégg,ﬂuodﬂﬂgg[

Tam it 14

i panaro32

o
o fgffrime |
LR e

max-count

Python 3.3
Feb 14, 2014
Key
Python 3.3
Jan 04, 2015
First
Python 3.3
Dec 18, 2013
First
Python 2.7
New! Feb 13, 2015
First
Python 3.3
Jan 02, 2015
First
Python 3.3
Nov 09, 2014
First

Python 3.3
New! Apr 30, 2014
First
Python 2.7
MNew! Mar 25, 2015
First

Python 3.3
MNew! Mar 29, 2015

W58 +9 & 635

Wil +7 & 49

W5 +1 &34

Wi +1 &23

& 20

17

W2 +2 & 15

15

Wi +1 &13

HOME
200 @ 6 «

Story
Solve it

Discuss (25
Timeline
Solutions
Random
Python 3.3

Get next task

Show description

max-count

import string

def checkio(text):

o e

We iterate through latyn alphabet and count each letter in the text.
Then 'max' selects the most freguent letter.

For the case when we have several equal letter,

'max’' selects the first from they.

LR

text = text.lower()
return max(string.ascii_lowercase, key=text.count)

QUESTIONS?

THANKS AND CREDITS

reveal.js by Hakim El Hattab (MIT)
Steve McConnell "Code complete 2"
Robert Martin - "The clean coder™

Nttt
Ntt
Nttt
Nttt
Nttt

n://blog.codinghorror.com
n://docs.python-guide.org
ns://radon.readthedocs.org
0://www.pylint.org

0://www.checkio.org

STX Next

My

wife Karolina

