
Understanding Non-
Blocking I/O

Vaidik Kapoor
github.com/vaidik

EuroPython 2015

High Level Overview

● What is Non Blocking I/O?
● Understanding by examples
● Why should you care?
● Disclaimer: a rather beginner level

introduction to the topic

Who am I?

1. Pythonista for about 4 years
2. Infrastructure Engineer at Wingify (responsible

for all things systems and operations)
3. Based out of New Delhi, India
4. Social networks:

a. github.com/vaidik
b. twitter.com/vaidikkapoor

Some Background

1. Started out as a web developer and moved
down the stack

2. Encountered Gevent along the journey
3. Always wondered - how does this thing

really work
4. Nobody talks about it

Non-Blocking I/O

OR

What is blocking?

What is Blocking?

A function or a code-block is blocking if it
has to wait for anything to complete.

Blocking

1. A blocking function is capable of delaying
execution of other tasks, especially those
that are independent
a. In case of a server, other requests may get blocked
b. In case of a worker consuming tasks from a queue,

other independent tasks may get delayed
2. The overall system is not able to progress

I/O

At least for today’s applications (not exhaustive):
1. Dealing with the network
2. Reading from or writing to disk
3. Operations on Pipe
4. Basically, any kind of operation on a file

descriptor (in *NIX terminology).

Non-Blocking I/O

Dealing with I/O in a way so that execution
does not get delayed because of it.

Server / Client

Server / Client

Server / Client

Server / Client

Server / Client

$ time python example1-client.py

python example1.1-client.py 0.05s user 0.08s system
0% cpu 45.050 total

Non-Blocking Network I/O in Python

At the most basic level, it’s all about:

$ pydoc socket.socket.setblocking

socket.socket.setblocking = setblocking(...) unbound socket._socketobject method

setblocking(flag)

Set the socket to blocking (flag is true) or non-blocking (false).

setblocking(True) is equivalent to settimeout(None);

setblocking(False) is equivalent to settimeout(0.0).

Server / Client v2

$ time python example2-client.py

Traceback (most recent call last):

 File "example2-client.py", line 9, in <module>

 assert sent == len(data), '%s != %s' % (sent,
len(data))

AssertionError: 457816 != 73400320

python example2-client.py 0.06s user 0.06s system
89% cpu 0.136 total

Server / Client v3

Server / Client v4

Understanding select()

● A system call for monitoring events on file
descriptors

● select.select() just wraps the select syscall
○ It does make things much simpler than C
○ If you can understand this, then working with the C

API would be much simpler

select.select = select(...)

select(rlist, wlist, xlist[, timeout]) -> (rlist, wlist, xlist)

Understanding select()

● Takes three sets of fds for monitoring them for reading,
writing and exceptions

● Returns three sets with fds that are ready to be read
from, written to or handled for exception

Client v5

select and family

1. Other implementations for monitoring file
descriptors:
a. poll - Unix/Linux
b. epoll - Linux
c. kqueue - BSD

2. The de-facto today - epoll and kqueue.

One library to rule them all

1. libevent
2. libev
3. libuv
4. more?

1. Gevent
a. Greenlet based
b. C extension
c. Probably the easiest to start with for all practical purposes

2. Eventlet
a. Greenlet based
b. Pure Python

In Python World (Libraries)

1. Twisted
a. Mainloop is called Reactor
b. Almost all commonly used protocols implemented
c. Pure Python
d. Not very-well suited for web apps

2. Tornado
a. Mainloop is called IOLoop
b. Pure Python
c. More focussed for writing webapps

In Python World (Frameworks)

1. asyncio

In Python World (Frameworks)

Questions?

