
TDD is not JUSTTDD is not JUST
about testsabout tests

Fabrizio RomanoFabrizio Romano
@gianchub

EuroPython 2015 - Bilbao

July 21th

Hello Bilbao!Hello Bilbao!

Thank you for being here!Thank you for being here!

If you want to know moreIf you want to know more
about me, here's a LITTLE bit...about me, here's a LITTLE bit...

0110010101100110

Got it?

The plan:The plan:

Hello! (Amazing joke about the bit...)

The plan (we're here)

What drew me to TDD?

Why do we need it?

A story about TDD

A little disclaimerA little disclaimer
This is my own view
Simple examples
No definitions

What drew me to TDD?What drew me to TDD?

It all happened in London...

Mark HenwoodMark Henwood

“ Don't worry,
TDD will take us there

Ondrej KohoutOndrej Kohout

“ Too much logic!

If someone isIf someone is

achieving great results:achieving great results:

Observe and learnObserve and learn

Why do we need TDD?Why do we need TDD?

def is_positive(n):
 # We assume n is integer.
 return n > 0

Example #1Example #1

How do we test this function?

BBoundariesoundaries

def is_positive(n):
 # We assume n is integer.
 return n > 0

eq(False, is_positive(0))
eq(False, is_positive(-3))
eq(True, is_positive(3))

Is this a good test?

def is_positive(n):
 # We assume n is integer.
 return n > 1

eq(False, is_positive(0)) # still passing
eq(False, is_positive(-3)) # still passing
eq(True, is_positive(3)) # still passing

GranularityGranularity

def is_positive(n):
 # We assume n is integer.
 return n > 1

eq(False, is_positive(0)) # still passing
eq(False, is_positive(-1)) # still passing
eq(True, is_positive(1)) # NOW FAILS!

Much better!

The boundary cannot jiggle any more!

def is_positive(n):
 # We assume n is integer.
 return n > 0

eq(False, is_positive(0))

for n in range(10 ** 4):
 eq(False, is_positive(-n))
 eq(True, is_positive(n))

Even better!

“ But unit tests need to be FAST...

So, can we testSo, can we test
everything?everything?

def is_positive(n):
 # We assume n is integer.
 if n == 10 ** 16:
 return 'Hola!'
 return n > 0

If you could test 1'000'000'000 numbers a
second, it would take about 4 months to

spot this.

We We cannotcannot test everything. test everything.

def get_squares(v):
 # assumes v is a list of integers
 if not v:
 return []
 return [n ** 2 for n in v]

Example #2Example #2

How do we test this function?

def get_squares(v):
 # assumes v is a list of integers
 if not v:
 return []
 return [n ** 2 for n in v]

eq([1, 0, 4, 9], get_squares([-1, 0, 2, -3]))
eq([], get_squares([]))

But what about that redundancy?
We may not notice it, if we tested AFTERWARDS

def get_squares(v):
 # assumes v is a list of integers
 if not v:
 return []
 return [n ** 2 for n in v]

def get_squares2(v):
 # assumes v is a list of integers
 return [n ** 2 for n in v]

this would cause us to write get_squares2
eq([1, 0, 4, 9], get_squares2([-1, 0, 2, -3]))

this would automatically pass, thanks to
the list comprehension
eq([], get_squares2([]))

Had we written the tests first, there
would be no redundancy.

Better than solving these problems,Better than solving these problems,
is to is to avoid introducing themavoid introducing them in the in the

first place.first place.

And And that's where TDDthat's where TDD comes comes
into the gameinto the game

So let's hear a storySo let's hear a story
about TDDabout TDD

“ Psst: It's extremely technical, beware!Psst: It's extremely technical, beware!

Once Upon a Time...Once Upon a Time...
there was a frogthere was a frog

He was in love with a beautiful princess. One day, at
the pond, the frog took courage, jumped out of the

water and told her:

“ I am a prince under a spell, kiss me,
break the spell and marry me!

Prince? Intriguing!

But she was a Geek...But she was a Geek...

TDD?

Let me get back
to you on this...

And he ran off to learn TDD fromAnd he ran off to learn TDD from
the masters...the masters...

Kent Becko Robert Martiño

TDD was strooong in them...

TDDTDD
Test Test DrivenDriven Development Development

TDD is a Software Development Process
based on the repetition of a very short
development cycle.

Def:

StepsSteps
Short at first
With experience: longer
Trouble? Go back to short

Where does it start?Where does it start?

The frog thought the training was completedThe frog thought the training was completed

But the masters disagreed,But the masters disagreed,

and they kept giving examples...and they kept giving examples...

What changes?What changes?

Without TDDWithout TDD

What & HowWhat & How

With TDDWith TDD

WhatWhat HowHow

OMG! It's like

having 2 brains!

TDD common aspectsTDD common aspects
KISS
YAGNI
Three strikes and refactor
(Test-Driven Development with Python - H. Percival)

Architecture design during refactoring
Triangulation

??

TriangulationTriangulation

eq(4, square(-2))

def square(n):
 # we can cheat, it is
 # the only requirement
 return 4

First step

"Fake it 'till you make it"

eq(4, square(-2))
eq(9, square(3))

def square(n):
 return n ** 2

With Triangulation

You write

the actual logic.

Main BenefitsMain Benefits

Refactor with Confidence
Readability
Loose Coupling
Easier to test and maintain
Test first => Better understanding of requirements
Small units => easier debugging and tests as docs
Higher speed:
It takes less to write tests and code
than to write code and debug

Main ShortcomingsMain Shortcomings

Whole company needs to believe
Blind spots
Badly written tests are hard to maintain

Real life examplesReal life examples

How do you test legacy code?How do you test legacy code?

Much better way...Much better way...

Changing aChanging a
horribly long viewhorribly long view

def get(request, *args, **kwargs):

 # ...
 # imagine many lines of code here...
 # ...

 data = get_data(**params)

 # ...
 # data is prepared, worked on
 # put in the context dictionary
 # and the view finally renders
 # a template
 return render(template_name, context, extra_params)

We need to insert pagination, filtering, sortingWe need to insert pagination, filtering, sorting

def get(request, *args, **kwargs):

 # same as before

 original_data = get_data(**params)

 filtered_data = filter_data(
 original_data, **filter_params)

 sorted_data = sort_data(
 filtered_data, **sort_params)

 data = paginate_data(
 sorted_data, **pagination_params)

 # same as before

 return render(template_name, context, extra_params)

We code pagination, filtering and sorting with TDDWe code pagination, filtering and sorting with TDD

Introducing a newIntroducing a new
functionality in existingfunctionality in existing

codecode

We need to add a feature to aWe need to add a feature to a
long piece of untested code.long piece of untested code.

def very_long_function(*args, **kwargs):

 # nasty piece of code that does
 # a lot of things.
 # Uncle Bob would cry if he saw it...

 return result

We cannot test it (no time, badly written, etc.)We cannot test it (no time, badly written, etc.)

One possible solution:One possible solution:

def test_new_functionality():
 # preparation stage
 # ...

 result = very_long_function(*args, **kwargs)

 assert_equal(expected_result, result)

def very_long_function(*args, **kwargs):

 # same nasty piece of code
 # with NEW FUNCTIONALITY IN
 # Uncle Bob still unhappy

 return result

After all these examples,After all these examples,
the frog was in ZEN-Modethe frog was in ZEN-Mode

He went back to the princessHe went back to the princess
and passed the exam.and passed the exam.

So they married, and when theSo they married, and when the
minister said:minister said:

"You can kiss the bride""You can kiss the bride"......

Nothing changed!Nothing changed!

He was just a talking frog after all!He was just a talking frog after all!

What's the moral of the story?What's the moral of the story?

The princess shouldThe princess should
have have tested tested FIRSTFIRST!!

And so should youAnd so should you

Thank you! Come say hi!Thank you! Come say hi!

gianchub

gianchub

gianchub [at] gmail [dot] com

http://slides.com/gianchub/ep2015-tdd

