STANDING ON THE SHOULDERS OF GIANTS

THE KOTTI WEB APPLICATION FRAMEWORK

http://kotti.pylonsproject.org/

& ANDREAS KAISER

B Owner & CTO of Xo7 GmbH | @ Willich, Germany (next to Disseldorf)
W @diskokaiser | €) disko | & irc://irc.freenode.net/#kotti

https://www.google.de/maps/place/Willich/@51.2612575,6.5194918,5z/data=!4m2!3m1!1s0x47b8ae6d41015221:0x42760fc4a2a76f0
http://xo7.de/
https://github.com/disko
irc://irc.freenode.net/#kotti
https://twitter.com/diskokaiser/

THIS TALK

Why does Kotti exist?

Who are these giants?

How are they utilized by Kotti?
Example / Code

Q&A (if we have time)

WHY?

YET ANOTHER WEB FRAMEWORK?

FEATURES

full featured CMS

lots of add ons (varying quality)

OFS (object file system)

security (permissions, roles, groups)
workflows

Can be a perfect choice when it fits your needs

BUT

does not fit all kinds of applications.

e multiple competing technologies
e doesn't conform to "The Zen of Python"
e complex

BRAINJIS{EULT™

L

FEATURES

small core

excellent documentation

pythonic

low level (micro framework)
unopinionated

= persistence

= templating / forms

= aquthentication / authorization sources
“framework framework”

CONCLUSION

only provides stuff we need

doesn't come with unneeded ballast

no need to

“waste time fighting the framework's decisions”
perfect foundation!

MAKE SOME CHOICES!

persistence

traversal or URL dispatch

templating & forms

authentication & authorization sources

SQLAlchemy

probably the most advanced ORM for Python
database agnostic

has many nice, useful features

= hybrid properties

= association proxies

= ordering list

transaction integration with pyramid

i3a THE NODE CLASS

e adjacency list pattern

= parent

= children
e single root node => node tree
e dictionary protocol

i3a THE NODE CLASS

DICTIONARY PROTOCOL

from kotti.resources import Document
from kotti.resources import get root

root = get root()

root['about']
<Document 2 at /about>

root['my-document'] = Document(title='My Document', description='foo',
body="'<p>some HTML</p>")

o o

i3a THE NODE CLASS

TRAVERSAL

root['a'] = Document(title='A', description='Document A'")
root['a']['b'] = Document(title='B', description='Document B')
root['a']['b"]['c'] = Document(title='C', description='Document C')

Object URL
a /a

b /a/b
C /a/b/c

POLIMORPHIC QUERIES

from kotti.resources import get root
from kotti.resources import Node

root = get root()
print root.children:
print (type(c))

"<class 'kotti.resources.Document'>"
"<class 'kotti.resources.File'>"

print Node.query.filter(Node.title == 'My Document').one()
"<Document 5 at /my-document>"

JOINED TABLE INHERITANCE

e class hierarchy is broken up among dependent tables
e each class represented by its own table
e the respective table only includes attributes local to that class

EVENTS

e before flush

= 0
= 0
=0

oJ
oJ
oJ

ectUpdate
ectlnsert
ectDelete

ALEMBIC

e DB migrations
e DDL (transactional, if supported by DBMS)

e DML
e environments

[z:)Bootstrap

e has all the components for modern Uls
® responsive

e well known

e easy to customize

Colander & Deform

COLANDER

e define data schema
e validate & deserialize
= HTML forms
= JSON
= XML
e serialize Python structures to
= strings
= mappings
= |ists

DEFORM

e render HTML forms from structures serialized by Colander
e outputs Bootstrap 3 forms (Deform 2)

g repoze.workflow

e a content workflow system
e states define

= role / permission mapping
e transitions define

= from_state

= to_state

= required permission

e storing and serving files in web applications
e multiple backends
= |ocal filesystem
= S3
= GridFS
= roll your own
e integrates with SQLAlchemy
= files are handled like a plain model attribute
= transaction aware

WIRING IT ALL TOGETHER...

started by Daniel Nouriin 2011

BSD licensed

1.0.0 in January 2015

current version: 1.1.4

9k downloads per month

still small, but active & healthy community
contributions are always welcome

CODE QUALITY

a.k.a. "everyone loves badges"

(s B

almost Heisenberg quality continuous integration (Python 2.6, 2.7, PostgreSQL, MySQL, SQLite)

‘ code quality .‘ code climate -‘ issues - 5 39] ‘ requirements -

static code analysis (Codacy, Code Climate, QuantifiedCode) (except 1 testing requirement)

https://www.quantifiedcode.com/app/project/f2a648c15f8e42788aaa4fa12a82df93
https://www.codacy.com/public/disko/Kotti/dashboard
https://codeclimate.com/github/Kotti/Kotti

CONFIGURATION

[app:kotti]
use = egg:kotti
sglalchemy.url = sqlite:///%(here)s/Kotti.db
sglalchemy.url = postgres://user:pass@host/db
kotti.configurators =
kotti tinymce.kotti configure
kotti youraddon.kotti configure

[filter:fanstatic]
use = egg:fanstatic#fanstatic

[pipeline:main]

pipeline =
fanstatic
kotti

[server:main]

use = egg:waitress#main
host = 127.0.0.1

port = 5000

EXAMPLE OPTIONS

Option

Purpose

Kotti.available_types

List of active content types

otti.configurators

List of advanced functions for config

Kotti.root_factory

Override Kotti’s default Pyramid root factory

Kotti.populators

List of functions to fill initial database

kotti.search_content

Override Kotti’s default search function

kotti.asset overrides

Override Kotti’s templates

kotti.authn_policy_factory

Component used for authentication

kotti.authz_policy_factory

Component used for authorization

EXAMPLE OPTIONS (CONTINUED)

Option Purpose

kotti.caching_policy_chooser Component for choosing the cache header policy
kotti.url_normalizer Component used for url normalization

kotti.max_file_size Max size for file uploads

Kotti.depot.*.” Configure the blob storage

Kotti.sanitizers Configure available sanitizers

Kotti.sanitize_on_write Configure sanitizers to be used on write access to resource objects

SECURITY

e use SQLAlchemy to...
= store pricipals (users & groups) in the DB
= attach (inheritable) ACLs to each node
e use Pyramid for...
= authentication
= authorization
e use repoze.workflow to...
= recompute ACLs on workflow state changes

EXAMPLE

CREATING AN ADDON

S pcreate -s kotti kotti myaddon
Author name [Andreas Kaiser]:

Author email [disko@binary-punks.com]:
Github username [Kotti]:

[.. lot of output ..]

Welcome to Kotti!

Documentation: http://kotti.readthedocs.org/

Development: https://github.com/Kotti/Kotti/
Issues: https://github.com/Kotti/Kotti/issues?state=open
IRC: irc://irc.freenode.net/#kotti

Mailing List: https://groups.google.com/group/kotti

CUSTOM CONTENT TYPE

My Kotti site

Public - View Contents Edit Share Actions - Add - Administrator - Mavigate

Document
File

Welcome to Kotti mage

S .
Congratulations! You have successfully inst Upload Gontant

Login

You can‘ ‘ to your site and start changing its contents. If you haven't chosen a password for your admin account yet, it'll likely be gwerty.
Once you're logged in, you'll see the grey editor bar below the top navigation bar. It will allow you to switch between editing and viewing the current page as it will appear to your
visitors.

Configure Add-ons Documentation

Find out how to configure your Kotti's title and many A number of add-ons allow you to extend the Wonder what more you can do with Kotti? What license it
other settings using a simple text file in your file system. functionality of your Kotti site. has? Read the manual for more information.

© Aliens 2015

SCHEMA DEFINITION FOR
VALIDATION AND FORM CREATION

import colander
import deform
from kotti.views.edit.content import ContentSchema

class DocumentSchema(ContentSchema):
body = colander.SchemaNode (
colander.String(),
title= (u'Body'),
widget=deform.widget.RichTextWidget(),
missing=u"")

ADD / EDIT FORMS

from kotti.resources import Document
from kotti.views.form import AddFormView
from kotti.views.form import EditFormView
from pyramid.view import view config

@view config(name=Document.type info.add view, permission='add',
renderer="'kotti:templates/edit/node.pt')
class DocumentAddForm(AddFormView) :
schema factory = DocumentSchema
add = Document
item type = (u"Document")

@view config(context=Document, name='edit', permission='edit',
renderer="'kotti:templates/edit/node.pt')
class DocumentEditForm(EditFormView) :
schema factory = DocumentSchema

My Kotti site Demo

Public ~ View Contents Edit Share Actions - Add - Administrator - Mavigate

Add Document to Welcome to Kotti.

Title

Description

Demo Doc

Tags

foo % || bar % || baz x

Body
File =~ Edit= Insert~ \View~ Format~ Table~ Tools -

- Formats ~ B [

= .
o — =

WYSIWYG editor

1. ane
2. two
3. three|

Add Document to Welcome to Kotti.

There was a problem with your submission

-]

Required
Description

Demo Doc

Tags

foo % || bar % || baz x

Body
File = Edit = Insert = View - Format = Table = Tools =
Formats~ | B [TS s

WYSIWYG editor

. ane
. two
3. three

h2

VIEW(S)

from pyramid.view import view config
@view config(name='view', context=Document, permission='view',
renderer="'kotti:templates/view/document.pt’)
def document view(context, request):
return {}

OR

from pyramid.view import view config
from pyramid.view import view defaults
from kotti.views import BaseView

@view defaults(context=Document, permission='view')
class DocumentViews (BaseView) :
@view config(name='view', renderer='kotti:templates/view/document.pt')
def view(self):
return {}

@view config(name='view2', renderer='kotti:templates/view/document2.pt')
def view(self):
return {'answer': 42}

@view config(name='json', renderer='json')

def view(self):
return {'title': self.context.title, 'body': self.context.body, ...}
return self.context

TEMPLATE(S)

My Kotti site Demo

Private - View Contents Edit Share Actions - Add ~ Administrator - MNavigate
You are here: Welcome to Kotti Demo

ltem was added.

Demo

Demo Document

Tagged with: |3

This is the WYSIWG editor.

« one
« two
« thres

© Aliens 2015

THE FUTURE

e will always stay “lean and mean in all of the right ways”
e Python 3 support

THANK YOU!

QUESTIONS?

