
RinohType

A Document Processor inspired by LaTeX

Brecht Machiels EuroPython 2015

About the Speaker

Brecht Machiels, *1982

enjoying computers since 
about 1986

Ph.D. in micro-electronics

programming C, C++, Python
professionally and for fun

2

What is RinohType?

document typesetter ~ LaTeX

input: structured text format (reStructuredText/Sphinx)

strict separation of content and style

style elements based on a style sheet

typeset as an article, book, …

output: PDF

3

Q: who has used LaTeX?

Motivation

4

Who else hates LaTeX?

story?

LaTeX errors: http://www.cs.utexas.edu/~witchel/errorclasses.html

http://www-rohan.sdsu.edu/~aty/bibliog/latex/gripe.html

http://blog.computationalcomplexity.org/2011/07/problems-of-latex.html

MacTeX (TeX Live) download 2.5 GB (includes a lot)

MacTeX Basic TeX download 110 MB

Motivation

LaTeX: golden standard for typesetting technical documents

4

Who else hates LaTeX?

story?

LaTeX errors: http://www.cs.utexas.edu/~witchel/errorclasses.html

http://www-rohan.sdsu.edu/~aty/bibliog/latex/gripe.html

http://blog.computationalcomplexity.org/2011/07/problems-of-latex.html

MacTeX (TeX Live) download 2.5 GB (includes a lot)

MacTeX Basic TeX download 110 MB

Motivation

LaTeX: golden standard for typesetting technical documents

Problems with LaTeX

cryptic warning/error messages

! Undefined control sequence

Runaway argument?

TeX macro language: hard to customize

large and complex (huge dependency)

4

Who else hates LaTeX?

story?

LaTeX errors: http://www.cs.utexas.edu/~witchel/errorclasses.html

http://www-rohan.sdsu.edu/~aty/bibliog/latex/gripe.html

http://blog.computationalcomplexity.org/2011/07/problems-of-latex.html

MacTeX (TeX Live) download 2.5 GB (includes a lot)

MacTeX Basic TeX download 110 MB

Goals

as capable as LaTeX

but easier to use, more transparent

easy to style documents

CSS-like stylesheets

document templates

pure-Python (3), minimize dependencies

docutils, PurePNG

5

modern replacement for LaTeX

document templates:

- provide standard (configurable) templates

- easy to create new ones

Status

6

beta: fairly feature-complete… needs testing, debugging, documenting

Status

first (beta-ish) release: 0.1.1

most LaTeX features implemented, equations

lacking docs (except for README) & needs testing

6

beta: fairly feature-complete… needs testing, debugging, documenting

Status

first (beta-ish) release: 0.1.1

most LaTeX features implemented, equations

lacking docs (except for README) & needs testing

coming soon: 0.1.2

nearly complete Sphinx support

prettier style sheet

6

beta: fairly feature-complete… needs testing, debugging, documenting

How to Use

7

RinohType

input files (similar to LaTeX)

structured text references images

RinohType comes with some style sheets and fonts

common font formats supported

(DocBook)reST
(Markdown)

(asciidoc)

Structured Text

RinohType

input files (similar to LaTeX)

structured text references images

RinohType comes with some style sheets and fonts

common font formats supported

PDF bitmap

Images

(DocBook)reST
(Markdown)

(asciidoc)

Structured Text

RinohType

input files (similar to LaTeX)

structured text references images

RinohType comes with some style sheets and fonts

common font formats supported

PDF bitmap

Images

(DocBook)reST
(Markdown)

(asciidoc)

Structured Text

RinohType

input files (similar to LaTeX)

structured text references images

RinohType comes with some style sheets and fonts

common font formats supported

PDF bitmap

Images

(DocBook)reST
(Markdown)

(asciidoc)

Structured Text

RinohType

Style Sheet
&

Document
Template

OpenType
TrueType

Type1

Style

input files (similar to LaTeX)

structured text references images

RinohType comes with some style sheets and fonts

common font formats supported

PDF bitmap

Images

(DocBook)reST
(Markdown)

(asciidoc)

Structured Text

RinohType

Style Sheet
&

Document
Template

OpenType
TrueType

Type1

Style

PDF

Output

input files (similar to LaTeX)

structured text references images

RinohType comes with some style sheets and fonts

common font formats supported

reStructuredText

9

Q: familiar with reStructuredText?

strict separation content/style - disadvantage?

- reST is extensible ~ TeX macros

- define new rST role/directive and corresponding RinohType Flowable/Inline

- probably much quicker than figuring out how to do it in TeX

- much cleaner

future: Sphinxtr for thesis?

reStructuredText

9

Document Title
==============

Section 1

This is a paragraph. This sentence
contains a link_ to the Python homepage.

.. _link: http://www.python.org

Section 2

Next up, an enumerated list!

1. a list item
2. this list item contains a bulleted  

 list

 * first bullet item
 * second bullet item

Q: familiar with reStructuredText?

strict separation content/style - disadvantage?

- reST is extensible ~ TeX macros

- define new rST role/directive and corresponding RinohType Flowable/Inline

- probably much quicker than figuring out how to do it in TeX

- much cleaner

future: Sphinxtr for thesis?

http://www.python.org

reStructuredText
easy-to-read, plain text markup

9

Document Title
==============

Section 1

This is a paragraph. This sentence
contains a link_ to the Python homepage.

.. _link: http://www.python.org

Section 2

Next up, an enumerated list!

1. a list item
2. this list item contains a bulleted  

 list

 * first bullet item
 * second bullet item

Q: familiar with reStructuredText?

strict separation content/style - disadvantage?

- reST is extensible ~ TeX macros

- define new rST role/directive and corresponding RinohType Flowable/Inline

- probably much quicker than figuring out how to do it in TeX

- much cleaner

future: Sphinxtr for thesis?

http://www.python.org

reStructuredText
easy-to-read, plain text markup

extensible!

9

Document Title
==============

Section 1

This is a paragraph. This sentence
contains a link_ to the Python homepage.

.. _link: http://www.python.org

Section 2

Next up, an enumerated list!

1. a list item
2. this list item contains a bulleted  

 list

 * first bullet item
 * second bullet item

Q: familiar with reStructuredText?

strict separation content/style - disadvantage?

- reST is extensible ~ TeX macros

- define new rST role/directive and corresponding RinohType Flowable/Inline

- probably much quicker than figuring out how to do it in TeX

- much cleaner

future: Sphinxtr for thesis?

http://www.python.org

reStructuredText
easy-to-read, plain text markup

extensible!

Sphinx: documentation generator

larger document projects

API documentation

books, manuals

to HTML, LaTeX, EPub, …

9

Document Title
==============

Section 1

This is a paragraph. This sentence
contains a link_ to the Python homepage.

.. _link: http://www.python.org

Section 2

Next up, an enumerated list!

1. a list item
2. this list item contains a bulleted  

 list

 * first bullet item
 * second bullet item

Q: familiar with reStructuredText?

strict separation content/style - disadvantage?

- reST is extensible ~ TeX macros

- define new rST role/directive and corresponding RinohType Flowable/Inline

- probably much quicker than figuring out how to do it in TeX

- much cleaner

future: Sphinxtr for thesis?

http://www.python.org

Demonstration

small reStructuredText file

rinoh cmd-line tool

Sphinx documentation

conf.py changes

10

citeproc-py

Citation Style Language (CSL) processor

XML format to describe the format of citations
and bibliographies

over 7500 styles available

parses BibTeX (.bib) databases

targets: HTML, reStructuredText, RinohType

11

not yet useable from reST / Sphinx (requires custom role)

http://citationstyles.org

citeproc-py: Example

Citations

(Knuth 1968–1990; Missilany 1984)

(Masterly 1988) 

References

Knuth, D.E., 1968–1990. The Art of Computer Programming, Addison-Wesley.

Missilany, J.-B., 1984. Handing out random pamphlets in airports.

Masterly, É., 1988. Mastering Thesis Writing.

12

PDF bitmap

Images

(DocBook)reST
(Markdown)

(asciidoc)

Structured Text

RinohType

Style Sheet
Document
Template

OpenType
TrueType

Type1

Style

PDF

Output

PDF bitmap

Images

BibTeX

References

(DocBook)reST
(Markdown)

(asciidoc)

Structured Text

RinohType

Style Sheet
Document
Template

OpenType
TrueType

Type1

Style

PDF

Output

PDF bitmap

Images

BibTeX

References

(DocBook)reST
(Markdown)

(asciidoc)

Structured Text

RinohType

citeproc-py
Style Sheet
Document
Template

OpenType
TrueType

Type1

Style

PDF

Output

Citation &
Bibliography

Style

Internals

Flowables & Style Sheets

Frontend (reStructuredText)

Page layout engine

14

Style Sheets

document elements

Flowables (body elements)

Inline elements

Style Sheets

link flowables to style definition

15

Flowable

document element that is “flowed” onto
the page

adapts to available width

e.g. paragraph

or horizontally aligns itself

e.g. image

flowables form a tree that together form
the document

16

flowables are Python objects

Flowable

document element that is “flowed” onto
the page

adapts to available width

e.g. paragraph

or horizontally aligns itself

e.g. image

flowables form a tree that together form
the document

16

Paragraph(style='title')
Section

Heading
Paragraph
Section

Heading
List

ListItem
Paragraph

ListItem
Paragraph

Section
Heading
Table

TableHead
TableRow
 TableCell
 TableCell

TableBody ...
Section ...

flowables are Python objects

Inline Elements

17

Text with multiple nested STYLES.

Inline Elements

17

Text with multiple nested STYLES.

Paragraph

SingleStyledText("Text with ")

MixedStyledText(style='emphasis')

SingleStyledText("multiple ")  

MixedStyledText(style='strong')

SingleStyledText("nested ")

SingleStyledText("styles", style='small caps')

SingleStyledText(".")

Style Sheets - like CSS

document elements are selected based on

their place in the document tree

their style attribute (~ CSS’s id & class)

any other attribute

style sheets are Python source files

18

Q: who is familiar with CSS?

Python style sheets: later support text version

Style Sheets - Selectors

19

Paragraph(style='title')
Section

Heading
Paragraph
Section

Heading
List

ListItem
Paragraph

ListItem
Paragraph

Section
Heading
Table

TableHead
TableRow
 TableCell
 TableCell

TableBody ...
Section ...

flowables are Python objects, also used in selectors

row_index:

- not a simple integer, but

- a special object that has a custom __eq__ operator

Style Sheets - Selectors

19

Paragraph(style='title')
Section

Heading
Paragraph
Section

Heading
List

ListItem
Paragraph

ListItem
Paragraph

Section
Heading
Table

TableHead
TableRow
 TableCell
 TableCell

TableBody ...
Section ...

match based on context

flowables are Python objects, also used in selectors

row_index:

- not a simple integer, but

- a special object that has a custom __eq__ operator

Style Sheets - Selectors

19

Paragraph(style='title')
Section

Heading
Paragraph
Section

Heading
List

ListItem
Paragraph

ListItem
Paragraph

Section
Heading
Table

TableHead
TableRow
 TableCell
 TableCell

TableBody ...
Section ...

match based on context
 
ListItem / Paragraph ① 

①

①

flowables are Python objects, also used in selectors

row_index:

- not a simple integer, but

- a special object that has a custom __eq__ operator

Style Sheets - Selectors

19

Paragraph(style='title')
Section

Heading
Paragraph
Section

Heading
List

ListItem
Paragraph

ListItem
Paragraph

Section
Heading
Table

TableHead
TableRow
 TableCell
 TableCell

TableBody ...
Section ...

match based on context
 
ListItem / Paragraph ① 

List / ... / Paragraph ① 
 

①

①

flowables are Python objects, also used in selectors

row_index:

- not a simple integer, but

- a special object that has a custom __eq__ operator

Style Sheets - Selectors

19

Paragraph(style='title')
Section

Heading
Paragraph
Section

Heading
List

ListItem
Paragraph

ListItem
Paragraph

Section
Heading
Table

TableHead
TableRow
 TableCell
 TableCell

TableBody ...
Section ...

match based on context
 
ListItem / Paragraph ① 

List / ... / Paragraph ① 
 

match based on style
①

①

flowables are Python objects, also used in selectors

row_index:

- not a simple integer, but

- a special object that has a custom __eq__ operator

Style Sheets - Selectors

19

Paragraph(style='title')
Section

Heading
Paragraph
Section

Heading
List

ListItem
Paragraph

ListItem
Paragraph

Section
Heading
Table

TableHead
TableRow
 TableCell
 TableCell

TableBody ...
Section ...

match based on context
 
ListItem / Paragraph ① 

List / ... / Paragraph ① 
 

match based on style
 
Paragraph.like('title') ② 
 

①

①

②

flowables are Python objects, also used in selectors

row_index:

- not a simple integer, but

- a special object that has a custom __eq__ operator

Style Sheets - Selectors

19

Paragraph(style='title')
Section

Heading
Paragraph
Section

Heading
List

ListItem
Paragraph

ListItem
Paragraph

Section
Heading
Table

TableHead
TableRow
 TableCell
 TableCell

TableBody ...
Section ...

match based on context
 
ListItem / Paragraph ① 

List / ... / Paragraph ① 
 

match based on style
 
Paragraph.like('title') ② 
 

match arbitrary attributes

①

①

②

flowables are Python objects, also used in selectors

row_index:

- not a simple integer, but

- a special object that has a custom __eq__ operator

Style Sheets - Selectors

19

Paragraph(style='title')
Section

Heading
Paragraph
Section

Heading
List

ListItem
Paragraph

ListItem
Paragraph

Section
Heading
Table

TableHead
TableRow
 TableCell
 TableCell

TableBody ...
Section ...

match based on context
 
ListItem / Paragraph ① 

List / ... / Paragraph ① 
 

match based on style
 
Paragraph.like('title') ② 
 

match arbitrary attributes
 
Section.like(level=2) / Heading ③ 

①

①

②

③

③

flowables are Python objects, also used in selectors

row_index:

- not a simple integer, but

- a special object that has a custom __eq__ operator

Style Sheets - Selectors

19

Paragraph(style='title')
Section

Heading
Paragraph
Section

Heading
List

ListItem
Paragraph

ListItem
Paragraph

Section
Heading
Table

TableHead
TableRow
 TableCell
 TableCell

TableBody ...
Section ...

match based on context
 
ListItem / Paragraph ① 

List / ... / Paragraph ① 
 

match based on style
 
Paragraph.like('title') ② 
 

match arbitrary attributes
 
Section.like(level=2) / Heading ③ 

TableCell.like(row_index=slice(0, None, 2),  
 rowspan=1) ④

①

①

②

③

③

④

flowables are Python objects, also used in selectors

row_index:

- not a simple integer, but

- a special object that has a custom __eq__ operator

Style Sheets - Beyond CSS

20

Style Sheets - Beyond CSS

extra level of indirection

style matcher: map selectors to style names

style sheet: map style name to style definition

20

Style Sheets - Beyond CSS

extra level of indirection

style matcher: map selectors to style names

style sheet: map style name to style definition

variables avoid duplication

20

Style Sheets - Beyond CSS

extra level of indirection

style matcher: map selectors to style names

style sheet: map style name to style definition

variables avoid duplication

a style can inherit from another

20

Style Matcher and Sheet

21

matcher can be used by multiple style sheets

Style Matcher and Sheet

21

StyledMatcher = dict that maps style names to selectors  
A single StyledMatcher can be used by multiple style sheets 

matcher can be used by multiple style sheets

Style Matcher and Sheet

21

StyledMatcher = dict that maps style names to selectors  
A single StyledMatcher can be used by multiple style sheets 

matcher = StyledMatcher()

matcher can be used by multiple style sheets

Style Matcher and Sheet

21

StyledMatcher = dict that maps style names to selectors  
A single StyledMatcher can be used by multiple style sheets 

matcher = StyledMatcher()
 
...  
matcher('emphasis', StyledText.like('emphasis'))  
matcher('nested line block', GroupedFlowables.like('line block')  
 / GroupedFlowables.like('line block'))  
...  
 
StyleSheet links each style name to a set of style attributes 

matcher can be used by multiple style sheets

Style Matcher and Sheet

21

StyledMatcher = dict that maps style names to selectors  
A single StyledMatcher can be used by multiple style sheets 

matcher = StyledMatcher()
 
...  
matcher('emphasis', StyledText.like('emphasis'))  
matcher('nested line block', GroupedFlowables.like('line block')  
 / GroupedFlowables.like('line block'))  
...  
 
StyleSheet links each style name to a set of style attributes 

styles = StyleSheet('IEEE', matcher=matcher)  

matcher can be used by multiple style sheets

Style Matcher and Sheet

21

StyledMatcher = dict that maps style names to selectors  
A single StyledMatcher can be used by multiple style sheets 

matcher = StyledMatcher()
 
...  
matcher('emphasis', StyledText.like('emphasis'))  
matcher('nested line block', GroupedFlowables.like('line block')  
 / GroupedFlowables.like('line block'))  
...  
 
StyleSheet links each style name to a set of style attributes 

styles = StyleSheet('IEEE', matcher=matcher)  

...  
styles('emphasis', font_slant=ITALIC)  
styles('nested line block', margin_left=0.5*CM)  
...

matcher can be used by multiple style sheets

Style Sheets - Variables

22

Style Sheets - Variables

22

Let’s make all fonts easily replaceable  

Style Sheets - Variables

22

Let’s make all fonts easily replaceable  

styles.variables['ieee_family'] = TypeFamily(serif=times,  
 sans=helvetica,  
 mono=courier)

Style Sheets - Variables

22

Let’s make all fonts easily replaceable  

styles.variables['ieee_family'] = TypeFamily(serif=times,  
 sans=helvetica,  
 mono=courier)
...  
styles('monospaced', typeface=Var('ieee_family').mono,  
 font_size=9*PT,  
 hyphenate=False,  
 ligatures=False)  
...

Style Sheet - Inheritance

23

vs CSS - different elements can share a base style

avoids duplication

Style Sheet - Inheritance

23

This style formats top-level headings 
 
styles('heading level 1', typeface=Var('ieee_family').serif,  
 font_weight=REGULAR,  
 font_size=10*PT,  
 small_caps=True,  
 justify=CENTER,  
 line_spacing=FixedSpacing(12*PT),  
 space_above=18*PT,  
 space_below=6*PT,  
 number_format=ROMAN_UC,  
 label_suffix='.' + FixedWidthSpace())  

vs CSS - different elements can share a base style

avoids duplication

Style Sheet - Inheritance

23

This style formats top-level headings 
 
styles('heading level 1', typeface=Var('ieee_family').serif,  
 font_weight=REGULAR,  
 font_size=10*PT,  
 small_caps=True,  
 justify=CENTER,  
 line_spacing=FixedSpacing(12*PT),  
 space_above=18*PT,  
 space_below=6*PT,  
 number_format=ROMAN_UC,  
 label_suffix='.' + FixedWidthSpace())  

This one inherits from the one above and  
overrides a single attribute  
 
styles('unnumbered heading level 1', base='heading level 1',  
 number_format=None)

vs CSS - different elements can share a base style

avoids duplication

Style Sheet - Extending

24

custom reStructuredText role

example :acronym:`RFC`

Style Sheet - Extending

24

A new StyleSheet can extend an existing one 

custom reStructuredText role

example :acronym:`RFC`

Style Sheet - Extending

24

A new StyleSheet can extend an existing one 

matcher2 = StyledMatcher()

custom reStructuredText role

example :acronym:`RFC`

Style Sheet - Extending

24

A new StyleSheet can extend an existing one 

matcher2 = StyledMatcher()
matcher('acronym', StyledText.like(cls=‘acronym')) # :acronym:`XML`  

custom reStructuredText role

example :acronym:`RFC`

Style Sheet - Extending

24

A new StyleSheet can extend an existing one 

matcher2 = StyledMatcher()
matcher('acronym', StyledText.like(cls=‘acronym')) # :acronym:`XML`  

styles2 = StyleSheet(‘custom IEEE', base=styles, matcher=matcher2)

custom reStructuredText role

example :acronym:`RFC`

Style Sheet - Extending

24

A new StyleSheet can extend an existing one 

matcher2 = StyledMatcher()
matcher('acronym', StyledText.like(cls=‘acronym')) # :acronym:`XML`  

styles2 = StyleSheet(‘custom IEEE', base=styles, matcher=matcher2)
styles2('acronym', small_caps=True)  

custom reStructuredText role

example :acronym:`RFC`

Style Sheet - Extending

24

A new StyleSheet can extend an existing one 

matcher2 = StyledMatcher()
matcher('acronym', StyledText.like(cls=‘acronym')) # :acronym:`XML`  

styles2 = StyleSheet(‘custom IEEE', base=styles, matcher=matcher2)
styles2('acronym', small_caps=True)  

We can override a style ...

custom reStructuredText role

example :acronym:`RFC`

Style Sheet - Extending

24

A new StyleSheet can extend an existing one 

matcher2 = StyledMatcher()
matcher('acronym', StyledText.like(cls=‘acronym')) # :acronym:`XML`  

styles2 = StyleSheet(‘custom IEEE', base=styles, matcher=matcher2)
styles2('acronym', small_caps=True)  

We can override a style ...
 
styles2('emphasis', font_weight=BOLD)  

custom reStructuredText role

example :acronym:`RFC`

Style Sheet - Extending

24

A new StyleSheet can extend an existing one 

matcher2 = StyledMatcher()
matcher('acronym', StyledText.like(cls=‘acronym')) # :acronym:`XML`  

styles2 = StyleSheet(‘custom IEEE', base=styles, matcher=matcher2)
styles2('acronym', small_caps=True)  

We can override a style ...
 
styles2('emphasis', font_weight=BOLD)  

... or a variable

custom reStructuredText role

example :acronym:`RFC`

Style Sheet - Extending

24

A new StyleSheet can extend an existing one 

matcher2 = StyledMatcher()
matcher('acronym', StyledText.like(cls=‘acronym')) # :acronym:`XML`  

styles2 = StyleSheet(‘custom IEEE', base=styles, matcher=matcher2)
styles2('acronym', small_caps=True)  

We can override a style ...
 
styles2('emphasis', font_weight=BOLD)  

... or a variable
 
styles2.variables['ieee_family'] = TypeFamily(serif=palatino,  
 sans=tahoma,  
 mono=monaco)

custom reStructuredText role

example :acronym:`RFC`

Frontend

Tasks

parse input document

transform into flowables tree

reStructuredText: docutils returns tree

map docutils elements to flowables / inline elems

25

docutils = reference reStructuredText parser

reStructuredText Frontend

very short view of how input files are handled

- node names map to class names

- each element in the RinohType flowables tree has reference back to source element

- warning/error messages can refer to it

- some nodes can represent both body and inline elements

reStructuredText Frontend
class Emphasis(InlineElement): # maps <emphasis> node  
 def build_styled_text(self):  
 return rinoh.SingleStyledText(self.text, style='emphasis')  

very short view of how input files are handled

- node names map to class names

- each element in the RinohType flowables tree has reference back to source element

- warning/error messages can refer to it

- some nodes can represent both body and inline elements

reStructuredText Frontend
class Emphasis(InlineElement): # maps <emphasis> node  
 def build_styled_text(self):  
 return rinoh.SingleStyledText(self.text, style='emphasis')  

class Paragraph(BodyElement): # maps <paragraph> node  
 def build_flowable(self):  
 return rinoh.Paragraph(super().process_content())  

very short view of how input files are handled

- node names map to class names

- each element in the RinohType flowables tree has reference back to source element

- warning/error messages can refer to it

- some nodes can represent both body and inline elements

reStructuredText Frontend
class Emphasis(InlineElement): # maps <emphasis> node  
 def build_styled_text(self):  
 return rinoh.SingleStyledText(self.text, style='emphasis')  

class Paragraph(BodyElement): # maps <paragraph> node  
 def build_flowable(self):  
 return rinoh.Paragraph(super().process_content())  

class Image(BodyElement, InlineElement): # maps <image> node  
 @property  
 def image_path(self):  
 return self.get('uri')  

very short view of how input files are handled

- node names map to class names

- each element in the RinohType flowables tree has reference back to source element

- warning/error messages can refer to it

- some nodes can represent both body and inline elements

reStructuredText Frontend
class Emphasis(InlineElement): # maps <emphasis> node  
 def build_styled_text(self):  
 return rinoh.SingleStyledText(self.text, style='emphasis')  

class Paragraph(BodyElement): # maps <paragraph> node  
 def build_flowable(self):  
 return rinoh.Paragraph(super().process_content())  

class Image(BodyElement, InlineElement): # maps <image> node  
 @property  
 def image_path(self):  
 return self.get('uri')  

 def build_styled_text(self): # called for inline images  
 return rinoh.InlineImage(self.image_path)  

very short view of how input files are handled

- node names map to class names

- each element in the RinohType flowables tree has reference back to source element

- warning/error messages can refer to it

- some nodes can represent both body and inline elements

reStructuredText Frontend
class Emphasis(InlineElement): # maps <emphasis> node  
 def build_styled_text(self):  
 return rinoh.SingleStyledText(self.text, style='emphasis')  

class Paragraph(BodyElement): # maps <paragraph> node  
 def build_flowable(self):  
 return rinoh.Paragraph(super().process_content())  

class Image(BodyElement, InlineElement): # maps <image> node  
 @property  
 def image_path(self):  
 return self.get('uri')  

 def build_styled_text(self): # called for inline images  
 return rinoh.InlineImage(self.image_path)  

 def build_flowable(self): # called for regular images  
 width_string = self.get('width')  
 return rinoh.Image(self.image_path,  
 scale=self.get('scale', 100) / 100,  
 width=convert_quantity(width_string))

very short view of how input files are handled

- node names map to class names

- each element in the RinohType flowables tree has reference back to source element

- warning/error messages can refer to it

- some nodes can represent both body and inline elements

Other Frontends

same approach can be used for

Markdown (using Mistune)

DocBook & custom XML formats

HTML

LaTeX (using PlasTeX)

27

http://mistune.readthedocs.org
http://tiarno.github.io/plastex/

No Frontend

invoices, catalogs, reports, certificates, …

design custom page layout

create document tree programmatically

from data in database

or combine with reStructuredText

28

not just limited to technical documents

folders: use PDFs as background (no examples yet)

~ ReportLab

Page Layout

Container: area on page where content is put

Page = top-level container

ExpandingContainer: enables footnotes, floats

Chain: link containers (across pages)

29

Page Layout: Body

30

Page = top-level container

container's position is specified relative to parent

Page Layout: Body
from rinoh import Page, Container  
from rinoh import A4, PORTRAIT, PT, CM  
 

30

Page = top-level container

container's position is specified relative to parent

Page Layout: Body
from rinoh import Page, Container  
from rinoh import A4, PORTRAIT, PT, CM  
 

30

Page = top-level container

container's position is specified relative to parent

Page Layout: Body
from rinoh import Page, Container  
from rinoh import A4, PORTRAIT, PT, CM  
 

page = Page(document_part, A4, PORTRAIT) 

30

Page = top-level container

container's position is specified relative to parent

Page Layout: Body

BODY

from rinoh import Page, Container  
from rinoh import A4, PORTRAIT, PT, CM  
 

page = Page(document_part, A4, PORTRAIT) 

30

Page = top-level container

container's position is specified relative to parent

Page Layout: Body

BODY

v_margin

h_margin

from rinoh import Page, Container  
from rinoh import A4, PORTRAIT, PT, CM  
 

page = Page(document_part, A4, PORTRAIT) 

30

h_margin

v_margin

Page = top-level container

container's position is specified relative to parent

Page Layout: Body

BODY

v_margin

h_margin

from rinoh import Page, Container  
from rinoh import A4, PORTRAIT, PT, CM  
 

page = Page(document_part, A4, PORTRAIT) 

h_margin = 2*CM  
v_margin = 4*CM

30

h_margin

v_margin

Page = top-level container

container's position is specified relative to parent

Page Layout: Body

BODY

v_margin

h_margin

from rinoh import Page, Container  
from rinoh import A4, PORTRAIT, PT, CM  
 

page = Page(document_part, A4, PORTRAIT) 

h_margin = 2*CM  
v_margin = 4*CM
body_width = page.width - 2 * h_margin  
body_height = page.height - 2 * v_margin  

30

h_margin

v_margin

Page = top-level container

container's position is specified relative to parent

Page Layout: Body

BODY

v_margin

h_margin

from rinoh import Page, Container  
from rinoh import A4, PORTRAIT, PT, CM  
 

page = Page(document_part, A4, PORTRAIT) 

h_margin = 2*CM  
v_margin = 4*CM
body_width = page.width - 2 * h_margin  
body_height = page.height - 2 * v_margin  

body = Container('body',  
 parent=page,  
 left=h_margin,  
 top=v_margin,  
 width=body_width,  
 height=body_height)

30

h_margin

v_margin

Page = top-level container

container's position is specified relative to parent

Page Layout: Header & Footer

31

BODY

contents of footer have unknown height

DownExpandingContainer: initially 0 height, grows

Page Layout: Header & Footer
from rinoh import DownExpandingContainer  
from rinoh import UpExpandingContainer  
from rinoh import PT  
 

31

BODY

contents of footer have unknown height

DownExpandingContainer: initially 0 height, grows

Page Layout: Header & Footer
from rinoh import DownExpandingContainer  
from rinoh import UpExpandingContainer  
from rinoh import PT  
 

31

FOOTER

BODY

contents of footer have unknown height

DownExpandingContainer: initially 0 height, grows

Page Layout: Header & Footer
from rinoh import DownExpandingContainer  
from rinoh import UpExpandingContainer  
from rinoh import PT  
 

31

spacing

FOOTER

BODY

contents of footer have unknown height

DownExpandingContainer: initially 0 height, grows

Page Layout: Header & Footer
from rinoh import DownExpandingContainer  
from rinoh import UpExpandingContainer  
from rinoh import PT  
 

spacing = 14*PT  

31

spacing

FOOTER

BODY

contents of footer have unknown height

DownExpandingContainer: initially 0 height, grows

Page Layout: Header & Footer
from rinoh import DownExpandingContainer  
from rinoh import UpExpandingContainer  
from rinoh import PT  
 

spacing = 14*PT  

footer = DownExpandingContainer( 
 'footer', parent=page,  
 left=h_margin,  
 top=body.bottom + spacing,  
 width=body_width)  

31

spacing

FOOTER

BODY

contents of footer have unknown height

DownExpandingContainer: initially 0 height, grows

Page Layout: Header & Footer
from rinoh import DownExpandingContainer  
from rinoh import UpExpandingContainer  
from rinoh import PT  
 

spacing = 14*PT  

footer = DownExpandingContainer( 
 'footer', parent=page,  
 left=h_margin,  
 top=body.bottom + spacing,  
 width=body_width)  

31

spacing

x

y

FOOTER

BODY

contents of footer have unknown height

DownExpandingContainer: initially 0 height, grows

Page Layout: Header & Footer

spacing

from rinoh import DownExpandingContainer  
from rinoh import UpExpandingContainer  
from rinoh import PT  
 

spacing = 14*PT  

footer = DownExpandingContainer( 
 'footer', parent=page,  
 left=h_margin,  
 top=body.bottom + spacing,  
 width=body_width)  

HEADER

31

spacing

x

y

FOOTER

BODY

contents of footer have unknown height

DownExpandingContainer: initially 0 height, grows

Page Layout: Header & Footer

spacing

from rinoh import DownExpandingContainer  
from rinoh import UpExpandingContainer  
from rinoh import PT  
 

spacing = 14*PT  

footer = DownExpandingContainer( 
 'footer', parent=page,  
 left=h_margin,  
 top=body.bottom + spacing,  
 width=body_width)  

header = UpExpandingContainer( 
 'header', parent=page,  
 left=h_margin,  
 bottom=body.top - spacing,  
 width=body_width)

HEADER

31

spacing

x

y

FOOTER

BODY

contents of footer have unknown height

DownExpandingContainer: initially 0 height, grows

Page Layout: Footnote Area

FOOTER

HEADER

32

BODY

x

y

cannot use body.bottom!

footnotes are added, footnote area grows

as footnote area grows, text area should shrink

float area ~ footnote area (top and/or bottom)

Page Layout: Footnote Area

FOOTER

from rinoh import Container  
from rinoh import FootnoteContainer  
from rinoh import PT  

HEADER

32

BODY

x

y

cannot use body.bottom!

footnotes are added, footnote area grows

as footnote area grows, text area should shrink

float area ~ footnote area (top and/or bottom)

Page Layout: Footnote Area

FOOTER

from rinoh import Container  
from rinoh import FootnoteContainer  
from rinoh import PT  

HEADER

32

BODY

FOOTNOTE AREA

x

y

cannot use body.bottom!

footnotes are added, footnote area grows

as footnote area grows, text area should shrink

float area ~ footnote area (top and/or bottom)

Page Layout: Footnote Area

FOOTER

from rinoh import Container  
from rinoh import FootnoteContainer  
from rinoh import PT  

note_area = FootnoteContainer( 
 'footnotes',  
 parent=body,  
 left=0*PT,  
 bottom=body.height)  

HEADER

32

BODY

FOOTNOTE AREA

x

y

cannot use body.bottom!

footnotes are added, footnote area grows

as footnote area grows, text area should shrink

float area ~ footnote area (top and/or bottom)

Page Layout: Footnote Area

FOOTER

from rinoh import Container  
from rinoh import FootnoteContainer  
from rinoh import PT  

note_area = FootnoteContainer( 
 'footnotes',  
 parent=body,  
 left=0*PT,  
 bottom=body.height)  

HEADER

32

BODY

FOOTNOTE AREA

TEXT AREA

x

y

cannot use body.bottom!

footnotes are added, footnote area grows

as footnote area grows, text area should shrink

float area ~ footnote area (top and/or bottom)

Page Layout: Footnote Area

FOOTER

from rinoh import Container  
from rinoh import FootnoteContainer  
from rinoh import PT  

note_area = FootnoteContainer( 
 'footnotes',  
 parent=body,  
 left=0*PT,  
 bottom=body.height)  

text_area = Container( 
 'text',  
 parent=body,  
 left=0*PT,  
 top=0*PT,  
 bottom=note_area.top)

HEADER

32

BODY

FOOTNOTE AREA

TEXT AREA

x

y

cannot use body.bottom!

footnotes are added, footnote area grows

as footnote area grows, text area should shrink

float area ~ footnote area (top and/or bottom)

Page Layout: Chains

render contents directly into a container, or

to a chain = list of containers

container full ➞ move to next container

no more containers ➞ new page

33

34

Lorem Ipsum

Page Layout: Chains

title container = DownExpandingContainer

column containers are placed relative to title container’s bottom attrib

35

Lorem Ipsum

Page Layout: Chains

35

Lorem Ipsum
In publishing and graphic design, lorem
ipsum (derived from Latin dolorem ipsum,
translated as "pain itself") is a filler text
commonly used to demonstrate the graphic
elements of a document or visual
presentation. Replacing meaningful content
with placeholder text allows viewers to focus
on graphic aspects such as font, typography,
and page layout without being distracted by
the content. It also reduces the need for the
designer to come up with meaningful text, as
they can instead use quickly-generated lorem
ipsum.

The lorem ipsum text is typically a
scrambled section of De finibus bonorum et
malorum, a 1st-century BC Latin text by
Cicero, with words altered, added, and
removed to make it nonsensical, improper
Latin.

A variation of the ordinary lorem ipsum text
has been used in typesetting since the 1960s
or earlier, when it was popularized by
advertisements for Letraset transfer sheets. It
was introduced to the Information Age in the

Page Layout: Chains

35

Lorem Ipsum
In publishing and graphic design, lorem
ipsum (derived from Latin dolorem ipsum,
translated as "pain itself") is a filler text
commonly used to demonstrate the graphic
elements of a document or visual
presentation. Replacing meaningful content
with placeholder text allows viewers to focus
on graphic aspects such as font, typography,
and page layout without being distracted by
the content. It also reduces the need for the
designer to come up with meaningful text, as
they can instead use quickly-generated lorem
ipsum.

The lorem ipsum text is typically a
scrambled section of De finibus bonorum et
malorum, a 1st-century BC Latin text by
Cicero, with words altered, added, and
removed to make it nonsensical, improper
Latin.

A variation of the ordinary lorem ipsum text
has been used in typesetting since the 1960s
or earlier, when it was popularized by
advertisements for Letraset transfer sheets. It
was introduced to the Information Age in the

the mid-1980s by Aldus Corporation, which
employed it in graphics and word processing
templates for its desktop publishing
program, PageMaker, for the Apple
Macintosh.[1]

Example Text
A common form of lorem ipsum reads:
Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

Discovery
"Lorem ipsum" text is derived from sections
1.10.32–3 of Cicero's De finibus bonorum et
malorum (On the Ends of Goods and Evils,
or alternatively [About] The Purposes of

Page Layout: Chains

35

Lorem Ipsum
In publishing and graphic design, lorem
ipsum (derived from Latin dolorem ipsum,
translated as "pain itself") is a filler text
commonly used to demonstrate the graphic
elements of a document or visual
presentation. Replacing meaningful content
with placeholder text allows viewers to focus
on graphic aspects such as font, typography,
and page layout without being distracted by
the content. It also reduces the need for the
designer to come up with meaningful text, as
they can instead use quickly-generated lorem
ipsum.

The lorem ipsum text is typically a
scrambled section of De finibus bonorum et
malorum, a 1st-century BC Latin text by
Cicero, with words altered, added, and
removed to make it nonsensical, improper
Latin.

A variation of the ordinary lorem ipsum text
has been used in typesetting since the 1960s
or earlier, when it was popularized by
advertisements for Letraset transfer sheets. It
was introduced to the Information Age in the

the mid-1980s by Aldus Corporation, which
employed it in graphics and word processing
templates for its desktop publishing
program, PageMaker, for the Apple
Macintosh.[1]

Example Text
A common form of lorem ipsum reads:
Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

Discovery
"Lorem ipsum" text is derived from sections
1.10.32–3 of Cicero's De finibus bonorum et
malorum (On the Ends of Goods and Evils,
or alternatively [About] The Purposes of

Page Layout: Chains

35

Lorem Ipsum
In publishing and graphic design, lorem
ipsum (derived from Latin dolorem ipsum,
translated as "pain itself") is a filler text
commonly used to demonstrate the graphic
elements of a document or visual
presentation. Replacing meaningful content
with placeholder text allows viewers to focus
on graphic aspects such as font, typography,
and page layout without being distracted by
the content. It also reduces the need for the
designer to come up with meaningful text, as
they can instead use quickly-generated lorem
ipsum.

The lorem ipsum text is typically a
scrambled section of De finibus bonorum et
malorum, a 1st-century BC Latin text by
Cicero, with words altered, added, and
removed to make it nonsensical, improper
Latin.

A variation of the ordinary lorem ipsum text
has been used in typesetting since the 1960s
or earlier, when it was popularized by
advertisements for Letraset transfer sheets. It
was introduced to the Information Age in the

the mid-1980s by Aldus Corporation, which
employed it in graphics and word processing
templates for its desktop publishing
program, PageMaker, for the Apple
Macintosh.[1]

Example Text
A common form of lorem ipsum reads:
Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

Discovery
"Lorem ipsum" text is derived from sections
1.10.32–3 of Cicero's De finibus bonorum et
malorum (On the Ends of Goods and Evils,
or alternatively [About] The Purposes of

Good and Evil).[2] The original passage
began: Neque porro quisquam est qui
dolorem ipsum quia dolor sit amet
consectetur adipisci velit (translation:
"Neither is there anyone who loves, pursues
or desires pain itself because it is pain").
It is not known exactly when the text
acquired its current standard form; it may
have been as late as the 1960s. Dr. Richard
McClintock, a Latin scholar who was the
publications director at Hampden-Sydney
College in Virginia, discovered the source of
the passage sometime before 1982 while
searching for instances of the Latin word
"consectetur", rarely used in classical
literature.[1][a] The physical source of the
Lorem Ipsum text may be the 1914 Loeb
Classical Library Edition of the De Finibus,
where the Latin text finishes page 34 with
"Neque porro quisquam est qui do-" and
begins page 36 with "lorem ipsum (et seq.)
…", suggesting that the galley type of that
page 36 was scrambled to make the dummy
text seen today.

English Translation
A H. Rackham's 1914 translation – in the
aforementioned Loeb Classical Library
edition – with the major source of lorem
ipsum highlighted:
[32] But I must explain to you how all this
mistaken idea of denouncing of a pleasure
and praising pain was born and I will give
you a complete account of the system, and
expound the actual teachings of the great
explorer of the truth, the master-builder of

Page Layout: Chains

35

Lorem Ipsum
In publishing and graphic design, lorem
ipsum (derived from Latin dolorem ipsum,
translated as "pain itself") is a filler text
commonly used to demonstrate the graphic
elements of a document or visual
presentation. Replacing meaningful content
with placeholder text allows viewers to focus
on graphic aspects such as font, typography,
and page layout without being distracted by
the content. It also reduces the need for the
designer to come up with meaningful text, as
they can instead use quickly-generated lorem
ipsum.

The lorem ipsum text is typically a
scrambled section of De finibus bonorum et
malorum, a 1st-century BC Latin text by
Cicero, with words altered, added, and
removed to make it nonsensical, improper
Latin.

A variation of the ordinary lorem ipsum text
has been used in typesetting since the 1960s
or earlier, when it was popularized by
advertisements for Letraset transfer sheets. It
was introduced to the Information Age in the

the mid-1980s by Aldus Corporation, which
employed it in graphics and word processing
templates for its desktop publishing
program, PageMaker, for the Apple
Macintosh.[1]

Example Text
A common form of lorem ipsum reads:
Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

Discovery
"Lorem ipsum" text is derived from sections
1.10.32–3 of Cicero's De finibus bonorum et
malorum (On the Ends of Goods and Evils,
or alternatively [About] The Purposes of

Good and Evil).[2] The original passage
began: Neque porro quisquam est qui
dolorem ipsum quia dolor sit amet
consectetur adipisci velit (translation:
"Neither is there anyone who loves, pursues
or desires pain itself because it is pain").
It is not known exactly when the text
acquired its current standard form; it may
have been as late as the 1960s. Dr. Richard
McClintock, a Latin scholar who was the
publications director at Hampden-Sydney
College in Virginia, discovered the source of
the passage sometime before 1982 while
searching for instances of the Latin word
"consectetur", rarely used in classical
literature.[1][a] The physical source of the
Lorem Ipsum text may be the 1914 Loeb
Classical Library Edition of the De Finibus,
where the Latin text finishes page 34 with
"Neque porro quisquam est qui do-" and
begins page 36 with "lorem ipsum (et seq.)
…", suggesting that the galley type of that
page 36 was scrambled to make the dummy
text seen today.

English Translation
A H. Rackham's 1914 translation – in the
aforementioned Loeb Classical Library
edition – with the major source of lorem
ipsum highlighted:
[32] But I must explain to you how all this
mistaken idea of denouncing of a pleasure
and praising pain was born and I will give
you a complete account of the system, and
expound the actual teachings of the great
explorer of the truth, the master-builder of

human happiness. No one rejects, dislikes, or
avoids pleasure itself, because it is pleasure,
but because those who do not know how to
pursue pleasure rationally encounter
consequences that are extremely painful. Nor
again is there anyone who loves or pursues
or desires to obtain pain of itself, because it
is pain, but occasionally circumstances occur
in which toil and pain can procure him some
great pleasure. To take a trivial example,
which of us ever undertakes laborious
physical exercise, except to obtain some
advantage from it? But who has any right to
find fault with a man who chooses to enjoy a
pleasure that has no annoying consequences,
or one who avoids a pain that produces no
resultant pleasure?
[33] On the other hand, we denounce with
righteous indignation and dislike men who
are so beguiled and demoralized by the
charms of pleasure of the moment, so
blinded by desire, that they cannot foresee
the pain and trouble that are bound to ensue;
and equal blame belongs to those who fail in
their duty through weakness of will, which is
the same as saying through shrinking from
toil and pain. These cases are perfectly
simple and easy to distinguish. In a free
hour, when our power of choice is
untrammeled and when nothing prevents our
being able to do what we like best, every
pleasure is to be welcomed and every pain
avoided. But in certain circumstances and
owing to the claims of duty or the
obligations of business it will frequently
occur that pleasures have to be repudiated
and annoyances accepted. The wise man

Page Layout: Chains

Extensibility

Each flowable is represented by a Python class

Create new flowable: inherit from Flowable

Extend built-in flowable

inherit, adjust frontend mapper and style sheet?

monkey-patch

36

extension API?

Extensibility - Code Base

small code base < 10k lines of code

font parsers: 2000 lines

PDF backend: 2600 lines

reST & Sphinx frontends: 740 lines

core: ~ 3800 lines

37

core is almost feature complete (except equations)

doesn’t have all the features offered by LaTeX extensions

Performance

38

Cython

- mostly container access instead of number crunching

PyPy

- not further investigated

- haven’t tried with newer releases

Performance

Sphinx docs (194 pages) on 2.2 GHz Core i7

70 sec (2 passes) / 40 sec (with cache)

38

Cython

- mostly container access instead of number crunching

PyPy

- not further investigated

- haven’t tried with newer releases

Performance

Sphinx docs (194 pages) on 2.2 GHz Core i7

70 sec (2 passes) / 40 sec (with cache)

Cython: no significant speedup

no single bottleneck, no number crunching

38

Cython

- mostly container access instead of number crunching

PyPy

- not further investigated

- haven’t tried with newer releases

Performance

Sphinx docs (194 pages) on 2.2 GHz Core i7

70 sec (2 passes) / 40 sec (with cache)

Cython: no significant speedup

no single bottleneck, no number crunching

PyPy: much slower than CPython

38

Cython

- mostly container access instead of number crunching

PyPy

- not further investigated

- haven’t tried with newer releases

License

free for non-commercial use

currently: AGPL

AGPL to be replaced

commercial use requires separate license

details to be determined

39

open-source projects can freely use RinohType for Sphinx PDF use

AGPL to be replaced, to make intentions more clear

complex matter

More Info

RinohType (note spelling)

PyPI: https://pypi.python.org/pypi/RinohType

Blog: http://www.mos6581.org

GitHub: https://github.com/brechtm/rinohtype

40

ideas, thoughts, suggestions -> talk to me

https://pypi.python.org/pypi/RinohType
http://www.mos6581.org
https://github.com/brechtm/rinohtype

Questions?

