
Parallelism Shootout
threads vs. multiple processes vs. asyncio

by Shahriar Tajbakhsh at EuroPython 2015

Shahriar Tajbakhsh
Software Engineer @ Osper

github.com/s16h
twitter.com/STajbakhsh
linkedin.com/in/STajbakhsh
shahriar.svbtle.com

Me?

http://github.com/s16h
http://twitter.com/STajbakhsh
http://linkedin.com/in/STajbakhsh
http://shahriar.svbtle.com

What?

We want to download data from lots and
lots* of URLs stored in a text file and then

save that data on our machine.

* We’ll actually be using 30 to make demonstration easier and more practical.

How?

Using three different modules:
threading, multiprocessing and asyncio.

Why?

To walk through the mechanics of each
approach, then show simple speed
benchmarks of the three different

approaches.

What’s the first rule?

Break down the problem.

Broken Down Problem

1. Read URLs from file

2. Download the content from The Internet™

3. Store the content on our machine

Before we begin…

Reminder
CPU-Bound
A computation where the time for it to complete is
determined principally by the speed of the central
processor.

I/O-Bound
A computation in which the time it takes to complete
it is determined principally by the period spent
waiting for input/output operations to be completed.

CPU-Bound or I/O-Bound?

1. Read URLs from file

2. Download the content

3. Store the content on our machine

I/O-Bo
und

I/O-Bo
und

I/O-Bo
und

Just Saying…

Generally, most* tasks we do are I/O-Bound.

* I haven’t statistically looked into this. It’s just a guess based on personal experience.

Before we parallelise…

Sequential Approach

import sys

from util import (
 filename_for_url, # Returns a filename for a URL.
 get_url_content, # Returns the content at the given URL.
 urls, # Reads URLs from a file.
 write_to_file # Writes a string to a file.
)

def main():
 for url in urls('urls.txt'):
 content = get_url_content(url)
 filename = filename_for_url(url, 'downloads')
 write_to_file(filename, content)

if __name__ == '__main__':
 sys.exit(main())

Time

CPU

1

2

work work work work

skiving…

Time

CPU

1

2

waiting for I/O
CPU working

skiving…

Benchmark for Sequential Approach
Ti

m
e

(s
)

0

10

20

30

40

Number of URLs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Threading

What Kind of Threads?

Actual real POSIX threads (pthreads) or
Windows threads.

import threading

class MyThread(threading.Thread):
 def run(self):
 print('erm, wow?')

worker = MyThread()

import threading

def do_work():
 print('erm, wow?')

worker = Thread(target=do_work)

inheriting from threading.Thread using threading.Thread directlyor

Making Threads

Running Threads

import threading

class MyThread(threading.Thread):
 def run(self):
 print('erm, wow?')

worker = MyThread()
worker.start()

from threading import Thread

def do_work():
 print('erm, wow?')

worker = Thread(target=do_work)
worker.start()

call the run() method on the Thread instance

Daemons

def do_work():
 while True:
 print('Look ma, I never stop!')

worker = threading.Thread(target=do_work, daemon=True)

Threads that run forever need to be made
daemonic. Otherwise, when the main thread

exits the interpreter will lock.

from queue import Queue
from threading import Thread

from sequential_example import do_work
from util import filename_for_url, get_url_content, urls, write_to_file

unvisited_urls = Queue()

def visit_urls():
 while True:
 url = unvisited_urls.get()
 do_work(url)
 unvisited_urls.task_done()

def add_urls_to_queue():
 for url in urls('urls.txt'):
 unvisited_urls.put(url)

def run(number_of_worker_threads):
 add_urls_to_queue()

 for _ in range(number_of_worker_threads):
 worker = Thread(target=visit_urls, daemon=True)
 worker.start()

 unvisited_urls.join()

Put all URLs in the queue so different
threads can consume them.

from queue import Queue
from threading import Thread

from sequential_example import do_work
from util import filename_for_url, get_url_content, urls, write_to_file

unvisited_urls = Queue()

def visit_urls():
 while True:
 url = unvisited_urls.get()
 do_work(url)
 unvisited_urls.task_done()

def add_urls_to_queue():
 for url in urls('urls.txt'):
 unvisited_urls.put(url)

def run(number_of_worker_threads):
 add_urls_to_queue()

 for _ in range(number_of_worker_threads):
 worker = Thread(target=visit_urls, daemon=True)
 worker.start()

 unvisited_urls.join()

from queue import Queue
from threading import Thread

from sequential_example import do_work
from util import filename_for_url, get_url_content, urls, write_to_file

unvisited_urls = Queue()

def visit_urls():
 while True:
 url = unvisited_urls.get()
 do_work(url)
 unvisited_urls.task_done()

def add_urls_to_queue():
 for url in urls('urls.txt'):
 unvisited_urls.put(url)

def run(number_of_worker_threads):
 add_urls_to_queue()

 for _ in range(number_of_worker_threads):
 worker = Thread(target=visit_urls, daemon=True)
 worker.start()

 unvisited_urls.join()

Create daemonic
threads.

from queue import Queue
from threading import Thread

from sequential_example import do_work
from util import filename_for_url, get_url_content, urls, write_to_file

unvisited_urls = Queue()

def visit_urls():
 while True:
 url = unvisited_urls.get()
 do_work(url)
 unvisited_urls.task_done()

def add_urls_to_queue():
 for url in urls('urls.txt'):
 unvisited_urls.put(url)

def run(number_of_worker_threads):
 add_urls_to_queue()

 for _ in range(number_of_worker_threads):
 worker = Thread(target=visit_urls, daemon=True)
 worker.start()

 unvisited_urls.join()

Do the actual work.

Time

CPU

1

2

waiting for I/O
CPU working
Global Interpreter Lock (GIL)

still skiving…

3 Threads

Benchmark for Threading Approach (with 30 URLs)

Ti
m

e
(s

)

0

7.5

15

22.5

30

Number of Threads

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Multiprocessing

• A package that supports spawning
processes using an API similar to the
threading module.

• Side-steps the Global Interpreter Lock and
allows the programmer to fully leverage
multiple processors.

multiprocessing

threading example to
multiprocessing…

from multiprocessing import Process, Queue

from sequential_example import do_work
from util import filename_for_url, get_url_content, urls, write_to_file

unvisited_urls = Queue()

def visit_urls():
 while True:
 url = unvisited_urls.get()
 do_work(url)
 unvisited_urls.task_done()

def add_urls_to_queue():
 for url in urls('urls.txt'):
 unvisited_urls.put(url)

def run(number_of_worker_threads):
 add_urls_to_queue()

 for _ in range(number_of_worker_threads):
 worker = Process(target=visit_urls, daemon=True)
 worker.start()

 unvisited_urls.join()

Pool Object

Convenient means of parallelising the
execution of a function across multiple input

values, distributing the input data across
processes (data parallelism).

sequential example to
multiprocessing…

from util import filename_for_url, get_url_content, urls, write_to_file

def do_work(url):
 content = get_url_content(url)
 if content:
 filename = filename_for_url(url, 'downloads')
 write_to_file(filename, content)

def run(number_of_worker_processors):
 urls_ = list(urls('urls.txt'))

 with Pool(worker_processes) as pool:
 pool.map(do_work, urls_)

Time

CPU

1

2

waiting for I/O
CPU working

2 Processes

Time

CPU

1

2

waiting for I/O
CPU working

6 Processes

Benchmark for Multiprocessing Approach (with 30 URLs)
Ti

m
e

(s
)

0

10

20

30

40

Number of Processes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Asyncio

What is asyncio?
• Module added in Python 3.4.

• Provides infrastructure for writing single-
threaded concurrent code.

• Low-level; higher level frameworks such as
Twisted or Tornado can build on top of it.

Basic asynio Concepts

What is a coroutine?

Essentially, a function that can be
suspended at preset execution points, and
resumed later, having kept track of its local

state.

How is a coroutine used?

• If you have 3 functions to run, on a single
thread, you’re forced to run them one-by-
one in series.

• In contrast, if you have 3 coroutines, you
can interleave their computations.

3 functions run one after the other

blue suspends

blue carries on

blue makes more progress

Event Loop

The component that is in charge of keeping
track of and scheduling all the coroutines

that want time on the thread.

import aiohttp
import asyncio

from util import filename_for_url, urls, write_to_file

@asyncio.coroutine
def get_url_content(url):
 response = yield from aiohttp.request('GET', url)
 return (yield from response.read_and_close())

@asyncio.coroutine
def do_work(url):
 content = yield from asyncio.async(get_url_content(url))
 filename = filename_for_url(url, 'downloads')
 write_to_file(filename, content)

def run():
 coroutines = [do_work(url) for url in urls('urls.txt')]
 event_loop = asyncio.get_event_loop()
 event_loop.run_until_complete(asyncio.wait(coroutines))
 event_loop.close()

import aiohttp
import asyncio

from util import filename_for_url, urls, write_to_file

@asyncio.coroutine
def get_url_content(url):
 response = yield from aiohttp.request('GET', url)
 return (yield from response.read_and_close())

@asyncio.coroutine
def do_work(url):
 content = yield from asyncio.async(get_url_content(url))
 filename = filename_for_url(url, 'downloads')
 write_to_file(filename, content)

def run():
 coroutines = [do_work(url) for url in urls('urls.txt')]
 event_loop = asyncio.get_event_loop()
 event_loop.run_until_complete(asyncio.wait(coroutines))
 event_loop.close()

import aiohttp
import asyncio

from util import filename_for_url, urls, write_to_file

@asyncio.coroutine
def get_url_content(url):
 response = yield from aiohttp.request('GET', url)
 return (yield from response.read_and_close())

@asyncio.coroutine
def do_work(url):
 content = yield from asyncio.async(get_url_content(url))
 filename = filename_for_url(url, 'downloads')
 write_to_file(filename, content)

def run():
 coroutines = [do_work(url) for url in urls('urls.txt')]
 event_loop = asyncio.get_event_loop()
 event_loop.run_until_complete(asyncio.wait(coroutines))
 event_loop.close()

import aiohttp
import asyncio

from util import filename_for_url, urls, write_to_file

@asyncio.coroutine
def get_url_content(url):
 response = yield from aiohttp.request('GET', url)
 return (yield from response.read_and_close())

@asyncio.coroutine
def do_work(url):
 content = yield from asyncio.async(get_url_content(url))
 filename = filename_for_url(url, 'downloads')
 write_to_file(filename, content)

def run():
 coroutines = [do_work(url) for url in urls('urls.txt')]
 event_loop = asyncio.get_event_loop()
 event_loop.run_until_complete(asyncio.wait(coroutines))
 event_loop.close()

import aiohttp
import asyncio

from util import filename_for_url, urls, write_to_file

@asyncio.coroutine
def get_url_content(url):
 response = yield from aiohttp.request('GET', url)
 return (yield from response.read_and_close())

@asyncio.coroutine
def do_work(url):
 content = yield from asyncio.async(get_url_content(url))
 filename = filename_for_url(url, 'downloads')
 write_to_file(filename, content)

def run():
 coroutines = [do_work(url) for url in urls('urls.txt')]
 event_loop = asyncio.get_event_loop()
 event_loop.run_until_complete(asyncio.wait(coroutines))
 event_loop.close()

Benchmark for asyncio Approach
Ti

m
e

(s
)

0

0.75

1.5

2.25

3

Number of URLs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Drum roll

Speed Comparison
Ti

m
e

(s
)

0

10

20

30

40

30 URLs

sequential threading multiprocessing asyncio

2.543.25

31

Conclusion?

I prefer not to conclude when it comes to
parallelism.

Who was I?

Shahriar Tajbakhsh
Software Engineer @ Osper

github.com/s16h
twitter.com/STajbakhsh
linkedin.com/in/STajbakhsh
shahriar.svbtle.com

http://github.com/s16h
http://twitter.com/STajbakhsh
http://linkedin.com/in/STajbakhsh
http://shahriar.svbtle.com

Code and Other Resources

Will be at
https://github.com/s16h/EuroPython-2015

after the talk.

https://github.com/s16h/EuroPython-2015

Q&PA

Questions and Possible Answers!

