
MAX

Realtime messaging and

activity stream engine
Carles Bruguera (@sunbit)

Víctor Fernández de Alba (@sneridagh)

Víctor
● Senior Python Developer and IT architect

● Plone Foundation member

● Plone core developer since 2010

● Author of Plone 3 intranets book (2010, PacktPub)

@sneridagh

Carles
● Python and JavaScript lover

● Working with python for the last 8 years

● Occasional Erlang coder (when on drugs)

● Regex freak

@sunbit

Python @UPCnet and @BarcelonaTech

DEMO!

History
● First commit on August, 2011

● Initially designed as the key feature for the Universitat

Politècnica de Catalunya (BarcelonaTech) university

concept of social intranet

● Today, MAX is used by more than 30.000 students and

8.000 university staff integrated in the online campus

and the institutional collaboration tools

What is MAX?
● RESTful API

● 88 (and growing) endpoints

● Multi-source user and application activity stream

● Asynchronous messaging and conversations

● GPL Licensed

Old styled forums

Forum Topic Post Post Post

What is a context?

Context (unique URI)

Forum Topic Post

Posts

Subscriptions

Post Post

Contexts
● Identified by unique URIs

● Permissions per context

o read

o write

o subscribe

o unsubscribe

● Multiple context types based on permissions variations

● Granular permissions per user

o Overriding the default ones defined by the context

o Grant / Revoke

o invite

o kick

o delete

o flag

Real life examples

Communities site

Alumni

Sell your stuff

Institutional events

Institutional news

Online campus

Compilers

Faculty news

Applied maths III

Signal theory

Real life examples (II)
Community types

Open Closed Institutional

Everyone can
join and leave

at will

The owner
should invite me
to join and I can

leave at will

The site admin
subscribes

people, no one
can leave

Features

Activity Stream

● Stores activity from users and applications

● Usual social actions

○ Comments

○ Likes

○ Favorites

● Images and files support

Features

Conversations

● Realtime conversations and private messaging

● One to one

● Groups

● Images and files support

Features

JS Javascript
UI widget

Notifications

● Platform specific push notifications 

 

 

● Internal notifications

○ Double check

○ others

Features

Features

External sources aggregation

Features

Fully deployable on premises

● Addresses any security concerns

● Absolute customer data privacy

and ownership

● “Corporate whatsapp”

Features Summary

JS

Components overview

iOs App

Plone

Moodle

android App

REST Api
“MAX”

OAuth Server
“Osiris”

Messaging
“Maxbunny”

NGINX

max.ui.js

RabbitMQ MongoDB

LDAP
Sync services

“Hub”

Twitter listener
“MaxTweety”

Osiris
● Minimal OAuth2 server implementation

● Build on top of pyramid

● Resource Owner Credentials Flow

● Tokens stored on MongoDB

● /token endpoint to generate token for a user

● /checktoken endpoint to verify a token

● Base LDAP user storage implementation

● Pluggable repoze.who based alternative user

storage implementations

NGINX

Pyramid + gevent

MongoDB

WSGI (Chausette)

MAX
● REST(ful) api

● Also build on top of pyramid

● Hybrid URL-dispatch + traversal routing

● ACL policy with fine-grained permissions per

endpoint

● Customized venusian decorator to configure

endpoints

● Tweens used for several tasks

● Per-exception catching to provide detailed JSON

error messages

● Per-request caching of variables

NGINX

Pyramid + Gevent

MongoDB

WSGI (Chausette)

RabbitMQ

MAX (Routing)
● Route definition

RESOURCES['avatar'] = dict(route='/people/{username}/
avatar', filesystem=True, category='User', name='User
avatar', traverse='/people/{username}')

● Endpoint definition

@endpoint(route_name='avatar', request_method='POST',
permission=modify_avatar)
def postUserAvatar(user, request):
 """
 Upload user avatar
 """

MAX (Tweens)
● exception catcher

● post tunneling

● compatibility check
def compatibility_checker_factory(handler, registry):
 def compatibility_checker_tween(request):
 requested_compat_id = request.headers.get('X-Max-Compat-ID', None)
 if requested_compat_id is None:
 response = handler(request)
 return response

 expected_compat_id = str(request.registry.settings.get('max.compat_id'))
 if expected_compat_id == requested_compat_id:
 response = handler(request)
 return response
 else:
 return JSONHTTPPreconditionFailed(
 error=dict(
 objectType='error',
 error="CompatibilityIDMismatch",
 error_description='X-Max-Compat-ID header value mismatch, {} was

expected'.format(expected_compat_id)))
 return compatibility_checker_tween

MAX (Exception handling)
● Known error use cases are raised as custom

exceptions:
raise ObjectNotFound("User {} doesn't have role {}".format(user, role))

● And rendered as a JSON message

@view_config(context=ObjectNotFound)
def object_not_found(exc, request):

 return JSONHTTPNotFound(error=dict(objectType='error',
error=ObjectNotFound.__name__, error_description=exc.message))

● Non-handled exceptions are logged with request
information

RabbitMQ & messaging
● Exchange-to-exchange routing

● STOMP over WS using rabbitmq plugins

● “Public” end-user stomp endpoints

● Message delivery and security through

routing key bindings

● Oauth authentication via erlang plugin

● Easy plug-in of temp queues for debugging

NGINX

Queues & exchanges

RabbitMQ

Websockets

STOMP AMQP

Oauth Authentication

Oauth2

activity
type=topic

conversations
type=topic

userid.subscribe
type=fanout

userid.publish
type=direct

...

Mobile
Apps

Other
clients

pushmessages

dynamic
queue

dynamic
queue

MAX

Messaging Design

internal

id.*

id.*

*.messages

*.notifi
cations

id

MaxCarrot

{"uuid": "005fab55bee84",
 "user": {
 "username": "johndoe",
 "displayname" : "John Doe"
 },
 "action": "add",
 "object": "message",
 "data": {
 "text": "Hello world!"
 },
 "source": "ios",
 "domain": "demo",
 "version": "4.0.1",
 "published": "2015-07-21"}

MaxCarrot
● JSON based message format

● Used on messages routed through RabbitMQ

● Packed and unpacked versions

● Metadata/debugging fields

● Purpose related fields

● Encapsulates messaging logic

MaxCarrot
(Rules)

● Map field combinations to actions

● Pack messages following spec

● Ignore any message not matching any mapping

"source": {
 "id": "s",
 "type": "char",
 "values": {
 "ios": { "id”: "c" },
 (...)
 "max": { "id”: "m" }
 }

"version": {
 "id": "v",
 "type": "string",
}

MaxCarrot
(human-readable)

{"uuid": "005fab55bee84",
 "user": {
 "username": "johndoe",
 "displayname" : "John Doe"
 },
 "action": "add",
 "object": "message",
 "data": {
 "text": "Hello world!"
 },
 "source": "ios",
 "domain": "demo",
 "version": "4.0.1",
 "published": "2015-07-21"}

MaxCarrot
(nerd-readable)

{‘a’:'a','d':
{'text':'Helloworld
!'},'g':'005fab55be
e84','i':'demo','o'
:'m','p':'2015-07-2
1','s':'i','u':
{'u':'johndoe','d':
'JohnDoe'},'v':'4.0
.1'}

MaxBunny
● Pluggable multiprocess domain-aware

queue consumer

● A multiprocess runner runs N process for

each consumer defined.

● Each consumer binds to a queue and

consumes messages

● Runner provides a shared pool of WSGI

MaxClient instances, one for each

domain.MongoDB

RabbitMQ

MAX

MaxBunny Runner
& Consumers

WSGI MaxClient

MaxClient
● Opinionated Wrapper for REST api’s

● Wraps endpoint resources based on endpoint list definition.
 RESOURCES[‘activity’] = dict(route=’/people/{username}/activities’)

● Accesses endpoints in a pythonic way
 >>> client.people[‘username’].activities.get(qs={‘limit’:2})

● Creates json bodies from “nested” kwargs (with optional

sensible defaults)
 >>> client.activities.post(object_content=’Hello’)
 {
 “object”: {
 “objectType”: “note”,
 “content”: “Hello”
 }}

MaxClient
● Raises a custom RequestError exception on 5xx and

4xx responses

● Returns None on 404 responses

● Returns parsed JSON body on success responses

WSGI MaxClient
● WSGI version

● Subclassed MaxClient that makes calls to a “fake” wsgi

server

● Actual MAX Codebase is run by the client

● Requests don’t stress main api servers, only database

● Limitations:
o User must have privileges on “real” max server
o Computer from where client is run must have access to

storage backed

Twitter external aggregation
● Backend process listens twitter streaming service

● Selected tweets are queued and processed

● Valid tweets are injected into max activity stream

● Max users linked with twitter usernames

● Aggregation of content as a context

Current integrations

UPCnet uLearn Communities

UPCnet uLearn Campus

iOS & Android apps

Potential integrations
<place your web|app|whatever thingy name here>

<place the screenshots here>

Whishlist

● Social interactions (Follow/share)

● Finish & polish documentation

● Microservices / Dockerization

● Redis backed cache

● RabbitMQ SSL without NGINX

● Python3 / asyncio

● Explore JSON-LD (HATEOAS)

● Encryption

Community building?

Absolutely!

Let’s do it!

Contact us, PR are welcome!

Resources

https://upcnet.github.io/max

https://github.com/UPCnet/max

https://github.com/UPCnet/maxserver

Thanks / Gràcies
@sunbit

@sneridagh

