
M
em

be
ro

ft
he

H
el

m
ho

ltz
A

ss
oc

ia
tio

n

Embedding Visualization Applications with PyGR

Object oriented interfaces and PyQt/PySide bindings for GR - a universal framework for
visualization applications

Georg Brandl, Christian Felder, Josef Heinen

(a) Microphone Power Spectrum and Peaks (com-
puted using FFT)

(b)Surface Plot with Contour Lines (c)3D Surface Plot

GR

• GRaphics Library optimized for real-time data visualizations
• Procedural graphics backend (written in C)
• Does not rely on creation of figures
) Representation of continuous data streams

• Based on a Graphical Kernel System
• Device and Platform independent API
• Large scale of logical device drivers/plugins:
• Qt, wxWidgets
• X11, Quartz, Win32
• PostScript, PDF, SVG
• GS (BMP, JPEG, PNG, TIFF)
• MOV (MPEG4)
• HTML5

• Builtin support for 2D plotting and OpenGL (GR3)
) Coexistent 2D and 3D world

QtGR

• Qt Widgets for drawing and interacting with GR
• Specialized Qt Events, e. g. Mouse Events in different coordinate

systems (Normalized-, Device- and World Coordinates)
• MouseEvent
• WheelEvent
• PickEvent
• ROIEvent
• LegendEvent

• Support for PyQt and PySide

PyGR

• Object oriented interface on top of GR
• Convenience functions for
• Zooming
• Panning
• Selecting a Region
• Detecting predefined Regions Of Interest (point in polygon test)

• Independent of GUI Toolkits

• Manipulating object states instead of fiddling with procedure calls
• Adding new functionality using derived objects, e.g.
• Clamp minimum values for selecting a Region of Interest (xmin, ymin > 0)
1 class ContourAxes(PlotAxes):

def setWindow(self, xmin, xmax, ymin, ymax):

if xmin < 1:

xmin = 1

6 if ymin < 1:

ymin = 1

return PlotAxes.setWindow(self, xmin, xmax, ymin, ymax)

• Drawing a bar at a given position xi , yi to indicate a peak position
class PeakBars(PlotCurve):

2

def drawGR(self):

if self.linetype is not None and self.x:

preserve old values

lcolor = gr.inqlinecolorind()

7 gr.setlinewidth(2)

gr.setlinecolorind(self.linecolor)

for xi, yi in zip(self.x, self.y):

gr.polyline([xi, xi], [0, yi])

12

restore old values

gr.setlinecolorind(lcolor)

gr.setlinewidth(1)

• Hide/Unhide dependent objects
class DependentPlotCurve(PlotCurve):

Constructor...

dependent property...

5

pylint: disable=W0221

@PlotCurve.visible.setter

def visible(self, flag):

PlotCurve.visible.__set__(self, flag)

10 for dep in self.dependent:

dep.visible = flag

def drawGR(self):

PlotCurve.drawGR(self)

15 for dep in self.dependent:

if dep.visible:

dep.drawGR()

GR has been integrated into NICOS, a network-based experiment and instrument control system used for neutron scattering experiments at FRM II in Munich.

Network Instrument COntrol System

• Replaced existing Panels
• based on PyQwt (unmaintained)

• Auto scaling in x- and/or y- direction
• Adjust axes to fit all shown curves including error bars
• Adjust in respect to user specified region of interests
! Adjust axes in altering direction only

• Support for different x axes
• Fitting Peaks or arbitrary functions
• Picking of fit parameters

• Logarigthmic scale
• Dynamic tick marks for different time domains
• Legend items for curves
• Un/hide curve and dependencies, e.g. error bars or fit parameters

• General purpose functions:
• Zooming into a specific point (Mouse wheel zoom)
• Panning
• Selecting a Region of Interest

Ongoing Projects
• General purpose 3D plotting objects in PyGR
• Integrated live view for three-dimensional data
• Generation of SVG plots for HTML status monitor

Contact: c.felder@fz-juelich.de - Website: www.fz-juelich.de, gr-framework.org

