
DISTRIBUTED LOCKS
WITH REDIS AND PYTHON

Prepared by Sebastian Buczyński

WHO AM I
Software developer

Using mainly gevent, Twisted & Celery.

Working for Focus Telecom Poland

WHAT WE DO @ FOCUS
B2B telco solutions in Software as Service model

teleconferences and pbx, but our main product is a
Contact Center.

CONTACT CENTER?

A platform for building call centers, hotlines or helpdesks.

GOALS OF THIS TALK
Implementation of distributed locks using Redis and Python

Use in a real life application

NoSQL database - key -> value storage
key ∈ {string}

value ∈ {string, list, map, set, ...}
+ message passing

redis.io

LOCK

Software primitive that allows to exclusively access a
resource in a way, that nobody else can use it

CASE STUDY - CONTACT CENTER

CONTACT CENTER IS ...

Work automation

CONTACT CENTER IS ...

CONTACT CENTER IS LIKE A COMMON

TASK QUEUE

NOPE, IT'S NOT

Worker is not passive
Tasks are prioritized
Worker can handle multiple tasks simultaneously

SOLUTION - THE BIG PICTURE
Event-driven task manager - Twisted based
Redis - locks server

DISTRIBUTED MUTEX/BINARY SEMAPHORE
Either locked or unlocked
Stored as a Redis string
Non - blocking calls

DISTRIBUTED MUTEX - USE CASE 1
Keeping state - one lock for each worker
Locked while working on a task, released afterwards

DISTRIBUTED MUTEX - USE CASE 2
Choosing task on one's own
Discontinue work

Stored in Redis as a string

IMPLEMENTATION DETAILS

Need for atomicity

IMPLEMENTATION DETAILS 2
GET lock_key
if lock_key == 'unlocked':
 SET lock_key 'locked'

IMPLEMENTATION DETAILS 2
WATCH lock_key
GET lock_key
if lock_key == 'unlocked':
 SET lock_key 'locked'
else:
 UNWATCH

IMPLEMENTATION DETAILS 2
WATCH lock_key
GET lock_key
if lock_key == 'unlocked':
 MULTI
 SET lock_key 'locked'
 EXEC
else:
 UNWATCH

PYTHON PART - TASK MANAGER
Should be notified

PUBLISH locks_changes_channel lock_key_locked

To receive notifications

SUBSCRIBE locks_changes_channel

PYTHON PART - TWISTED POWERED
from txredis.client import RedisSubscriber
class LockSubscriber(RedisSubscriber):
 def messageReceived(self, channel, message)
 # do some stuff

DISTRIBUTED SEMAPHORE
threading.Semaphore
can be acquired/released few times

Stored as a Redis list
Blocking calls

s = Semaphore(2)
s.acquire()
s.acquire()
s.acquire() # Exception
s.release()
s.release()
s.release() # that too

DISTRIBUTED SEMAPHORE - USE CASE
Multiple tasks at the same time

Stored in Redis as a list

IMPLEMENTATION DETAILS

IMPLEMENTATION DETAILS 2

Acquiring

BRPOP semaphore_key some_timeout

Releasing

RPUSH semaphore_key some_val

PYTHON PART - WITHOUT CHANGES
...but personally never needed notifications on these.

SEMAPHORE'S STATE AFTER CHANGING IT
Approach one - wrap with MULTI - EXEC

Simpler in this case - write a lua script

redis.call('RPUSH', 'semaphore_key', 'some_val'
local count = redis.call('LLEN', 'semaphore_key'
return count

Evaluate this:

redis-cli EVAL "$(cat semaphore_release.lua)"

WARNING!
Making BRPOP inside MULTI/EXEC will return nil

BRPOP inside lua script will result in an error

ALTERNATIVE?
Non blocking - RPOP

FINAL REMARKS
Care about starting conditions

Study carefully control flow in your application

Work up a restoring state procedure

@EnforcerPL

QUESTIONS?

