


You can’t automatically 
check if code is good



Code quality in Python - 
tools and reasons

Radosław Ganczarek



Rice’s theorem



Rice’s theorem

(You probably haven’t heard of it)

for any non-trivial property of partial 
functions, no general and effective 
method can decide whether an 
algorithm computes a partial 
function with that property



Rice’s theorem

In the common language:

you can’t write a algorithm, that will 
check in finite time if a program has 
some nontrivial property



You can’t write a dictionary 
containing all good programs



Examples

You can’t automatically check if:
● program never fails
● there is any data set, for which program 

returns “1”
● program is well written and will be readable 

for humans
● program’s WTF factor will be low



But you can try hard ...



Don’t worry! It’s not that hard!



We’ve got many tools

Checkers
Formatters
Import sorters
Coverage
Docstring checkers
Dead code checkers
...



What’s this talk about?
YES

Developer’s view
Checking code every day
General tools
Python 2.7
Jenkins

NO
Manager’s view
Charts and tables
Django, flask, web2py etc.
Python 3.*
Buildbot, Travis etc.
Checkers for other languages

Import graph visualisation



Let’s get started!



Checkers



pep8



pyflakes



mccabe



radon



flake8



pylint



The lure of Pylama

Pro:
● all tools in one 

module
Con:
● Configuration



Other tools

pep257
vulture

isort



pep257



Vulture



isort



Extensions

flake8 (other checks - imports, docstrings etc.)
pylint (specific settings - Django, flask etc.)
pylama (new checkers)

browsing raw code vs AST



Extensions

Example: mccabe extension to flake8



Formatters

autopep8
yapf
isort



Autopep8

● Doesn’t fix 
everything

● Leaves ugly line 
breaks



Yapf - our saviour



Isort



Test coverage
coverage module
How to run
Common problems
Comparing with master



Utils

diff-cover
diff-quality
git-lint
hgdiffmetrics
scspell3k



diff-cover, diff-quality



git-lint, hgdiffmetrics



scspell3k



Automation

tox
py.test
Jenkins
Github PR builder plugin



Tox example (from diff-cover app)



OK, got it. But why?



Benefits?

● refactor confidence
● uniform style
Pro tip: buzzwords for 
managers:
● maintainability
● readability
● extendability



Questions?



Mandatory Monty Python screen



About me
Radosław Ganczarek
Senior Python Developer @ 
(http://stxnext.com)
From Wrocław (Poland)
https://pl.linkedin.com/in/dreamwalker


