
Building Mobile APIs with Services
by  - sjaensch@yelp.comStephan Jaensch



What's
Yelp?

connect people with great local
businesses
website, apps, mobile site
142 million monthly unique visitors
77 million reviews



Yelp for Biz

Owners

measure visitor activity on your page
interact with customers
upload photos



whoami
backend developer for the Biz Owner App

worked on the main Yelp app backend before that

Python user since 2008

did a lot of Django work in the past



Yelp: a brief history
lesson

founded in 2004
all code in one central repository
(‘yelp-main’)
web, mobile web, mobile backend, business owner site
a lot of homegrown code
new abstractions introduced without removing the old ones
as Yelp grew, this started to become a bottleneck



The Yelp push process
Code deployments (“pushes”) are done several times a day

Run by a pushmaster, an engineer with production system access

People join a push (“pickme”)



Running a push
Automatic checks make sure there are no merge conflicts

deployment branch is deployed to a stage system

after verification, it’s sent to production

~2 hour process, with no upper bound





Modularize
you can run only so many pushes a day

so let’s build services!



Why Services?
each service is developed and deployed independently

services are usually small, covering only one aspect or set of

features

easy to parallelize thanks to async HTTP requests, so it might even

speed your code up

http://bit.do/fowler-service

http://bit.do/microservices

https://github.com/Yelp/service-principles



Why Not Services?



Why Not Services?
consistency is really hard

no clear dependency / usage graph

need to maintain interfaces “forever”

testing one huge, mostly self-contained codebase is easy; how do
you test services?



How to make sure it doesn't

break

unittests

...are great, but not enough

a lot of breakage if interfaces change

our solution: acceptance tests

as close to production as possible without using dedicated stage
environments



Testing SOA at Yelp

spin up all components you need, using production code

done with docker-compose

heavyweight: take time to run, setup grows with the number of
services you call



Setting up acceptance testing
configs:
build: acceptance/configs/
volumes:
 - "./logs:/tmp/logs"

bizapp:
build: .
links:
 - bizfeed
 - businessmedia
 - internalapi
 - sessionsservice
 - ruleserv
volumes_from:
 - configs
ports:
 - 13849

internalapi:
image: docker-dev/internalapi-testing
links:
 - gearman
 - memcache
 - databaseprimary
 - databaseaux
 - databasebatch
 - geocoderservice
environment:
 YELP_USE_GEARMAND: True



The Yelp service stack
originally we used tornado; didn’t work well

now: Pyramid, uWSGI, SQLAlchemy

HTTP and JSON for communication

Swagger to specify the API and do the inter-service calls





Swagger
does request and response validation

data structure and basic type checking of the individual fields

works dynamically by reading a service’s spec, no need to generate
and update client libraries



The Biz App service
a special snowflake since it’s one of the very few

services reachable from the outside

not constrained to one area (like business media)

no local datastore

oftentimes just a proxy, calling yelp-main and other services



The Biz App service API
RESTy model

one resource per endpoint

do multiple calls (to different endpoints) to fetch related resources

get concurrency for free (if using async calls)

some say a lot of simple calls are easier to scale than fewer
complicated ones



The Biz App service API
one endpoint per client (app) page

for write (POST) endpoints, also send the client the data it needs to

display the follow-up page

aggregate and enrich data we retrieve from yelp-main and other

services

a high-level interface that translates to our low-level service APIs



Developing a mobile app
backend

mobile apps have releases

in our case, they’re synchronized, both in time and in features

iOS apps need to be reviewed; might take 10+ days

you probably also want to test before releasing

meaning: API needs to be done sooner than client implementation

way sooner than release date



It's not web development
you can’t upgrade apps whenever you upgrade the server

actually, some users never upgrade

so your APIs need to be backwards compatible - forever



Multi-version API
maintaining multiple versions can become costly

adding fields is backwards compatible



Monitoring
number of requests, server errors, task

queues, sent push notifications…

ElastAlert: it's open source!

app crashes: Crashlytics

you need an on-call rotation: we use
PagerDuty



More about services @Yelp
 

: Arrested Development - surviving the awkward
adolescence of a microservices-based application

Scott Triglia

Friday, 11am, Python Anywhere room



The shameless plugs
We’re hiring! Check out yelp.com/careers

Interested? Contact me even if you don’t find an open job position that
fits you, we’re always looking for talented people!

 aggregates the blog posts, open source
projects and more

yelp.com/engineering

follow us on Twitter: @Yelp, @YelpEngineering



Have fun and win prizes

The Yelp Dataset Challenge: yelp.com/dataset_challenge

Want to work with data, but have no data lying around?



THANK YOU
questions?


