
Arrested Development
The awkward adolescence of a microservices-based application

Europython 2015
Scott Triglia

The Company

77M reviews

142M monthly unique users

Your Speaker

Scott Triglia
@scott_triglia

4 years with Yelp
Search, ML, Services

Yelp
Transaction
Platform

The Product

Yelp
Transaction
Platform
(or just “Platform”)

The Product

Microservices
That Hot Trend

“…an approach to developing a single
application as a suite of small services, each
running in its own process and communicating
with lightweight mechanisms…”

http://martinfowler.com/articles/microservices.html

(clarkmaxwell via Flickr; CC BY-NC-ND 2.0)

Monolithic python code
resisted decoupling

Monolithic python code catered to
the lowest common denominator

Monolithic python code was
anti-agile

Time

Services

Pinterest Gingerbread House

http://pinterestfail.com/2015/04/28/fail-gingerbread-house/

Pinterest Gingerbread House

http://pinterestfail.com/2015/04/28/fail-gingerbread-house/

API complexity increases

coupling rises

interactions get murky

process does not scale

So what’s an engineer to do?

• Decoupling
• Defining
• Understanding Production
• Staying Agile

• Decoupling
• Defining
• Understanding Production
• Staying Agile

Old boring problem
Monolithic spaghetti code

Solution: microservices!

New exciting problem
how to share concepts

across services

New exciting problem
distributed tech debt

service_type

service_type
What product does your business
provide and how do they provide
it?

service_type

pickup

delivery

service_type

pickup

delivery

booking_at_business

booking_at_customer

service_type

pickup

delivery

hotel_reservation

booking_at_business

booking_at_customer

goods_at_customer

goods_at_business

Confusing
Pervasive

Convenient, but not designed

Draw boundaries, introduce
domain-specific concepts

tied to functionality

Lessons

Interfaces are the sum of
APIs, shared libraries, and the
data that flows through them

Sacrificing DRYness can be the
best choice for overall design

Service interfaces are a great
opportunity to intentionally
decouple systems

• Decoupling
• Defining
• Understanding Production
• Staying Agile

Have you ever needed to
understand a system and

been told go read the source?

What about a system which
only validates half its

interface?

Coming from a python
monolith, strong interfaces

were quite rare

def checkout(order, price, **kwargs):
 “““Process an order.”””

 validate_order(order)
 charge_credit_card(order.user, price)
 notify_user(order, **kwargs)

Client side - Yelp/bravado
from bravado.client import SwaggerClient

client = SwaggerClient.from_url(
 “www.myservice.com/swagger.json”
)

pet = client.pet.getPetById(petId=42).result()

Server side - striglia/pyramid_swagger
In your Pyramid webapp.py
config.include(‘pyramid_swagger')

Lessons

Interfaces should be intentional

Interfaces should be explicit

Find the mechanical things which don’t
scale and automate them mercilessly

• Decoupling
• Defining
• Understanding Production
• Staying Agile

Real customer bug report:
“We’re seeing 504s talking

to the /user_info API”

Ancient times:
Use logic and whatever logs

happen to exist

(drbethsnow via Flickr; CC BY-NC-ND 2.0)

Better:
Log all incoming API

requests to any service

(spam via Flickr; CC by 2.0)

Best:
Every service has a detailed access/

error log and tooling to examine them

So what about that customer
with the mystery 504?

0.15 s

2.5 s

Realistically:
Don’t require the customer

to report issues in
the first place

es_host: elasticsearch-hostname
es_port: 14900
index: logstash-errors-%G.%V

type: frequency
num_events: 20
timeframe:
 minutes: 2

alert:
 - "modules.sensu_alert.SensuAlerter"
sensu:
 team: platform
 tip: "This alert indicates a large number of errors across the Platform
product. See <link to Kibana> for details."
 page: true
 status: 2 # CRITICAL

es_host: elasticsearch-hostname
es_port: 14900
index: logstash-errors-%G.%V

type: frequency
num_events: 20
timeframe:
 minutes: 2
alert:
 - "modules.sensu_alert.SensuAlerter"
sensu:
 team: platform
 tip: "This alert indicates a large number of errors across the Platform
product. See <link to Kibana> for details."
 page: true
 status: 2 # CRITICAL

es_host: elasticsearch-hostname
es_port: 14900
index: logstash-errors-%G.%V

type: frequency
num_events: 20
timeframe:
 minutes: 2

alert:
 - "modules.sensu_alert.SensuAlerter"
sensu:
 team: platform
 tip: "This alert indicates a large number of errors across
the Platform product. See <link to Kibana> for details."
 page: true
 status: 2 # CRITICAL

Lessons

Logging is a superpower. Use it wisely
constantly.

But raw data is not enough! Visualize
and monitor actively.

These approaches make a world of difference:
• Incident response from days to minutes
• Investigations from ∞ to minutes

• Decoupling
• Defining
• Understanding Production
• Staying Agile

Uncomfortable conversation:
“Customers had their orders

interrupted. How are you
preventing it going forward?”

Understandable response:
“Deploy more carefully”

Understandable response:
“Expand oncall”

How do we ensure the team
stays agile as our services
grow in complexity?

Pain point:
The testing environment is

{broken, flaky, not like prod}

Pain point:
Tests passed but

 production broke

Production monitoring is the
natural extension of
excellent pre-deploy testing.

Pain point:
No clue how much time we

spend fixing production issues

Pain point:
Tough to argue what changes
will make things more robust

And as with everything else, this must
eventually be automated

Lessons

Networks of services are fundamentally
harder to test. Prepare accordingly.

Failure will happen. Focus on both
identifying and recovering quickly.

Staying agile is easy if your application
rarely fails and recovers automatically

Wrap Up

Know your roots

Be explicit

Measure everything

Scale via automation

Yelp/bravado
striglia/pyramid_swagger

Yelp/elastalert

http://engineeringblog.yelp.com/2015/03/
using-services-to-break-down-

monoliths.html

Our accumulated wisdom
Yelp/service-principles

Questions?

@scott_triglia

scott.triglia@gmail.com

