
A Pythonic Approach to Continuous Delivery

Sebastian Neubauer
Europython 2015

@sebineubauer
https://github.com/sebastianneubauer

sebastian.neubauer@blue-yonder.com

Overview
● What is Continuous Delivery?

○ definitions, analogies...

● How does a delivery pipeline look like?
○ deep dive into boring details…

● I have working python code, how do I start now?
○ we assemble exemplary building blocks to a working production line the

pythonic way

● What could possibly go wrong?
○ traps, tips & tricks, failures, unsolved problems, dangers…

● What should the future bring?
○ wishes and dreams of brighter days

● Summary

@sebineubauer

What is Continuous Delivery?

@sebineubauer

Overcoming the wall of confusion

Developers Operations

Code
Tests

Continuous Integration

Releases

Version Control

Packaging

Deploy

Lifecycle

Configuration

Security
MonitoringFeatures

Release
v0.1.2

@sebineubauer

DevOps

Code

Tests

Releases

Version Control

Packaging Deploy
Lifecycle

Configuration
Features

Continuous Delivery

Security

Monitoring

Continuous Integration

 The “DevOps” thing...
@sebineubauer

 Continuous Delivery
● Extending the development into production
● And extending operations into development
● Development includes the entire value stream
● Enables development cycles including customer feedback

Customer

Value Stream

Development

Feedback

@sebineubauer

 Continuous Delivery
● Release early, release often!
● “Continuous” is far more often than you think
● Explosion of complexity due to increased demands on security,

safety, failover, monitoring, tests

Automation

@sebineubauer

Poka-yoke (ポカヨケ)

“A poka-yoke is any mechanism in a lean
manufacturing process that helps an
equipment operator avoid (yokeru) mistakes
(poka). Its purpose is to eliminate product
defects by preventing, correcting, or
drawing attention to human errors as they
occur.”

wikipedia.org

@sebineubauer

Automated Software Production Line

The Delivery Pipeline

@sebineubauer

How does a delivery pipeline
look like?

@sebineubauer

 It’s up to you!
● Each change (commit) is deployed to production unless it is

proven to be not production ready
● Design the automated challenges well
● Try to get feedback (failure) as soon as possible
● Start with a walking skeleton

@sebineubauer

 A Typical Pipeline
@sebineubauer

 The Stages
@sebineubauer

I have working python code,
how do I start now?

@sebineubauerv

 A Proper Deployment Artifact

● This means put up everything for a proper deployable artifact:
○ python package
○ debian package
○ fancy docker

● It should be uniquely versioned
● It should manage dependencies
● Hint: https://github.com/blue-yonder/pyscaffold

>pip install pyscaffold
>putup my_app

-> Talk by I. Mărieș from Monday:

“Less known packaging features and tricks”

@sebineubauer

● All automated tests are executed each time someone commits to
master

>python setup.py test

 Continuous Integration

● Might be a good idea to split fast unit-tests, from slow integration
tests

● Any CI system will do the job: buildbot, travis...

@sebineubauer

 Continuous Integration
● Not creative enough for the challenges?

○ unit tests: only code, no environment dependency
○ integration tests/component tests: allowed to use some environment

dependencies: filesystem, http, database
○ static code analysis: pylint, pychecker
○ test coverage
○ doctests

● The result of CI is a fixed artifact with a unique version

>python setup.py sdist

● If you use pyscaffold, a PEP440 compatible version is generated
from the git commit and tag:

>python setup.py sdist0.0.1.post0.dev15+g172635

@sebineubauer

 Fill up the Artifact Repository

● Ah, yes you need one, let’s use the: http://doc.devpi.net/
● Devpi: secure, on-premise, open source, pypi compatible artifact

repository (short: index)

>devpi upload

This is “devpicat”,

@HolgerKrekel is

this really the

official logo??

-> Talk by Stephan Erb
today 12:30 B1

“Release Management
with Devpi”

@sebineubauer

“That was the fun part! Now
comes pain, tears and
configuration”

@sebineubauer

 Automated Deploy
● For automated acceptance test, we need a fully functional running

instance, deployed in a testing stage / test environment
● It is crucial, that the deployment code we use here, is the same

we use later in production
● The testing stage needs to be as close to the production

environment as possible
● Hint: After your first guesstimate of the time needed for

automation:

Multiply by a factor of 3

@sebineubauer

 Use Configuration Management
● You can use whatever you want for the deploy, even simple bash

scripts, but....
● Config management tools will ease your automated deploy by

orders of magnitude
● We use ansible, because it’s: python, simple, lightweight,

declarative,...

@sebineubauer

Example Ansible Playbook

- hosts: webservers
 tasks:
 - name: ensure my app is installed
 pip:
 name=my_app
 virtualenv=/my_app_home/venv
 extra_args='-i https://our_devpi/simple --pre -U'
 state=present

 - name: start the app
 shell: /my_app_home/venv/bin/my_app_started

@sebineubauer

 Acceptance Tests

● Acceptance tests prove the correct behavior of your app
● Be aware: This behaviour earns your money
● It is your last chance: Bugs that pass here will end up in

production!
● Tools you can use: plain unittest, behave, selenium,...

@sebineubauer

 Last step to Production

● You might want to have some additional non-functional tests:
○ performance
○ security
○ explorative

● You might want to have some manual approval (feature flags)
● If possible perform a canary release

@sebineubauer

 Steering of the Pipeline
● It is not trivial to keep control over the various deploy stages:

which version passed which tests, where are which versions
deployed...

● There are some few tool specialized for CD: go.cd or IBM
UrbanCode...

● We use Jenkins, because we have it already
● Job dependencies reflect the stages
● A manual approval for production is done by clicking “Build” :-)

@sebineubauer

What could possibly go wrong?

@sebineubauer

Traps, Tips & Tricks, Dangers…

● Keep it simple stupid!
● Automate all the things, because:

○ you are lazy
○ the complete delivery pipeline is in git:

■ you have predictable recovery
■ you know what is happening

○ machines do it just better
○ you can concentrate on value delivery

● Maintain and refactor your deployment
● For automation you need everything-as-a-service:

○ no tickets, no “you just have to click on”....

@sebineubauer

What should the future bring?

@sebineubauer

The not so perfect parts...

● Packaging and dependency management in python is not so
perfect at the moment

● The two worlds should unite: OS package managers vs. pip
● A pythonic continuous delivery tool is still missing, jenkins is not

sufficient:
○ what configuration is deployed where
○ access management
○ awareness of the delivery pipeline

● Many tools are still optimized for a manual workflow

Let’s start hacking on it!

@sebineubauer

Summary
● CD rocks, because:

○ agile: faster feedback iterations
○ automated better than manual
○ collaboration better than silos

● You can build your own CD pipeline,
just start today!

● Example building blocks are:
○ pyscaffold for python packages
○ devpi as artifact repository
○ jenkins for CI and steering
○ python unittest for tests
○ ansible for automated deploys
○ courage

@sebineubauer

Thank you!

@sebineubauer

Images:
slide 7: Cory Doctorow
https://www.flickr.com/photos/doctorow/17599851339/in/photolist-sPeQCK-8rL77m-5f8C9V-MxAHt-7L8phE-kN2oLW-kN24HW-4Le5L9-
7m77Ag-8q6foW-5eB9a-iHD6Jx-uckeMj-48K71K-6iyUxC-bxrnpQ-9hZUBe-44LSH-sYFm9J-baBQvp-nTVXsi-7n9P22-9hZWcX-9hZVoM-
66EEpg-sCfANm-6sGsY3-82ayUG-Mxs1C-8AharJ-4m2v48-nTW1k2-nTRhGu-q5MCm-nD3Wvv-PCCVj-oE51X-5V668Q-bpvXz-
nBryWw-nTVZMi-nTVZv6-nTNrGY-c1z2Fo-c1z26J-6iuLbV-6gfqJX-aztFKe-4rT58o-nxPg3/
CC BY-SA 2.0

Slide 9 Mixabest
https://upload.wikimedia.org/wikipedia/commons/5/5e/KUKA_Industrial_Robots_IR.jpg
CC BY-SA 3.0

